Skip to main content
Log in

Optical, dielectric relaxation and conduction study of Bi2Fe4O9 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic bismuth ferrite Bi2Fe4O9 (BFO) ceramic was synthesized by conventional solid state reaction route. X-ray diffraction and Rietveld refinement show formation of single phase ceramic with orthorhombic crystal structure (space group ‘Pbam’). The morphological study depicted a well-defined grain of size ~2 μm. The optical studies were carried out by using UV–Vis spectrophotometer which shows a band gap of 1.53 eV and a green emission spectrum at 537 is observed in the Photoluminescence study. The frequency dependent dielectric study at various temperature revealed that the dielectric constant decreases with increase in frequency. A noticeable peak shift towards higher frequency with increasing temperature is observed in the frequency dependent dielectric loss plot. The impedance spectroscopy shows a substantial shift in imaginary impedance (Z″) peaks toward the high frequency side described that the conduction in material favoring the long range motion of mobile charge carriers. The presence of non-Debye type multiple relaxations has been confirmed by complex modulus analysis. The frequency dependent Ac conductivity at different temperatures indicates that the conduction process is thermally activated. The variation of Dc conductivity exhibited a negative temperature coefficient of resistance behavior. The activation energy calculated from impedance, modulus and conductivity data confirmed that the oxygen vacancies play a vital role in the conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63(10), 38–43 (2010)

    Article  Google Scholar 

  2. Y. Liu, R. Zuo, Morphology and optical absorption of Bi2Fe4O9 crystals via mineralizer-assisted hydrothermal synthesis. Particuology 11, 581–587 (2013)

    Article  Google Scholar 

  3. M.N. Iliev, A.P. Litvinchuk, V.G. Hadjiev, M.M. Gospodinov, V. Skumryev, E. Ressouche, Phonon and magnon scattering of antiferromagnetic Bi2Fe4O9. Phys. Rev. B 81, 024302 (2010)

    Article  Google Scholar 

  4. D.H. Wang, C.K. Ong, The phase formation and magnetodielectric property in (1 − x)Bi2Fe4O9–xBaO composites. J. Appl. Phys. 100, 044111 (2006)

    Article  Google Scholar 

  5. Tae-Jin Park, G.C. Papaefthymiou, A.R. Moodenbaugh, Y. Mao, S.S. Wong, Synthesis and characterization of submicron single-crystalline Bi2Fe4O9cubes. J. Mater. Chem. 15, 2099–2105 (2005)

    Article  Google Scholar 

  6. Jian-Tao Han, Yun-Hui Huang, Rui-Jie Jia, Guang-Cun Shan, Rui-Qian Guo, W. Huang, Synthesis and magnetic property of submicron Bi2Fe4O9. J. Cryst. Growth 294, 469–473 (2006)

    Article  Google Scholar 

  7. Q. Zhang, W.J. Gong, J.H. Gong, X.K. Ning, Z.H. Wang, X.G. Zhao et al., Size-dependant magnetic, photoabsorbing and photocatalytic properties of single-crystalline Bi2Fe4O9 semiconductor nanocrystals. J. Phys. Chem. C 115, 25241–25246 (2011)

    Article  Google Scholar 

  8. A.S. Poghossian, H.V. Abobian, P.B. Avakian et al., Bismuth ferrites: new materials for semiconductor gas sensors. Sens. Actuators B Chem. 4, 545–549 (1991)

    Article  Google Scholar 

  9. S.M. Sun, W.Z. Wang, L. Zhang, M. Shang, Visible light-induced photocatalytic oxidation of phenol and aqueous ammonia in flowerlike Bi2Fe4O9 suspensions. J. Phys. Chem. C 113, 12826–12831 (2009)

    Article  Google Scholar 

  10. A.K. Singh, S.D. Kaushik, B. Kumar, P.K. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Substantial magnetoelectric coupling near room temperature in Bi2Fe4O9. Appl. Phys. Lett. 92, 132910 (2008)

    Article  Google Scholar 

  11. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 22, 65–71 (1969)

    Article  Google Scholar 

  12. D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144–3151 (1972)

    Article  Google Scholar 

  13. Z. Irshad, S.H. Shah, M.A. Rafiq, M.M. Hasan, First principles study of structural, electronic and magnetic properties of ferromagnetic Bi2Fe4O9. J. Alloys Compd. 624, 131–136 (2015)

    Article  Google Scholar 

  14. Y. Li, Y. Zhang, W. Le, J. Yu, C. Lu, L. Xia, Photo-to-current response of Bi2Fe4O9 nanocrystals synthesized through a chemical co-precipitation process. New J. Chem. 36, 1297–1300 (2012)

    Article  Google Scholar 

  15. N. Miriyala, K. Prashanthi, T. Thundat, Oxygen vacancy dominant strong visible photoluminescence from BiFeO3 nanotubes. Phys. Status Solidi RRL 7, 668–671 (2013)

    Article  Google Scholar 

  16. I. Mora-Sero, J. Bisquert, Fermi level of surface states in TiO2 nanoparticles. Nano Lett. 3, 945 (2003)

    Article  Google Scholar 

  17. A. Dutta, T.P. Sinha, Dielectric relaxation and electronic structure of Ca(Fe1/2Sb1/2)O3. Phys. Rev. B46, 155113 (2007)

    Article  Google Scholar 

  18. V.S. Postnikov, V.S. Pavlov, S.K. Turkov, Internal friction in ferroelectrics due to interaction of domain boundaries and point defects. J. Phys. Chem. Solids 31, 1785–1791 (1970)

    Article  Google Scholar 

  19. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941)

    Article  Google Scholar 

  20. S. Sen, S.K. Mishra, S.K. Das, A. Tarafdar, Impedance analysis of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 ceramic. J. Alloys Compd. 453, 395–400 (2008)

    Article  Google Scholar 

  21. T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, Frequency and temperature dependence dielectric study of strontium modified Barium Zirconium Titanate ceramics obtained by mechanochemical synthesis. J. Mater. Sci. Mater. Electron. 26, 3069–3082 (2015)

    Article  Google Scholar 

  22. R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche. Pogg. Ann. Phys. Chem. 91, 179 (1854)

    Article  Google Scholar 

  23. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  24. M.M. Hoque, A. Dutta, S. Kumar, T.P. Sinha, Dielectric relaxation and conductivity of Ba(Mg1/3Ta2/3)O3 and Ba(Zn1/3Ta2/3)O3. J. Mater. Sci. Technol. 30, 311–320 (2014)

    Article  Google Scholar 

  25. W. Li, R.W. Schwartz, ac conductivity relaxation processes in CaCu3Ti4O12 ceramics: grain boundary and domain boundary effects. Appl. Phys. Lett. 89, 242906 (2006)

    Article  Google Scholar 

  26. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  27. A.K. Jonscher, The `universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

Download references

Acknowledgments

AKS acknowledge Board of Research in Nuclear Science (BRNS), Mumbai (Sanction No: 2012/37P/40/BRNS/2145) and Department of Science and Technology (DST), New Delhi (Sanction No: SR/FTP/PS-187/2011) for funding. SRM and BS acknowledge BRNS and DST, India respectively for the financial support. Lastly, SRM is thankful to Dr. P. K. Sahoo, NISER (BBSR) for PL characterization and Tapabrata Dam for his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Badapanda or A. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, S.R., Sahu, B., Badapanda, T. et al. Optical, dielectric relaxation and conduction study of Bi2Fe4O9 ceramic. J Mater Sci: Mater Electron 27, 3645–3652 (2016). https://doi.org/10.1007/s10854-015-4203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4203-9

Keywords

Navigation