Skip to main content
Log in

Synthesis of PVP-Bi2WO6 photocatalyst and degradation of tetracycline hydrochloride under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Enhanced visible light photocatalytic activity of Bi2WO6 photocatalyst modified with different ratio of polyvinyl pyrrolidone (PVP) was synthesized by a facile solvothermal process. The as-prepared photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectra and photoluminescence spectra. The results indicated that the addition of PVP could control the particle morphology of bismuth tungstate catalyst to form high phase purity of Bi2WO6. The solvent-thermal reaction time was critical in deciding the structure and shapes of the catalysts, and the optimal solvent-thermal reaction time was 24 h. The photocatalytic activities of the PVP-Bi2WO6 catalysts were determined by photocatalytic degradation of tetracycline hydrochloride (TCH) in aqueous solution under visible light irradiation. Optical properties and the TCH degradation results showed that PVP-Bi2WO6 catalysts exhibited enhanced photodegradation for TCH under visible-light irradiation. Among them, P5 (PVP % = 1.0 wt%) exhibited the best photocatalytic activity for degradation ratio of TCH reaching 86.88 % in 90 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, J. Hazard. Mater. 209, 137 (2012). doi:10.1016/j.jhazmat.2012.01.006

    Article  Google Scholar 

  2. H. Wang, X. Wu, H. Zhao, X. Quan, Chin. Sci. Bull. 57, 601 (2012). doi:10.1007/s11434-011-4897-x

    Article  Google Scholar 

  3. X. Yu, Z. Lu, D. Wu et al., React. Kinet. Mech. Catal. 111, 347 (2014). doi:10.1007/s11144-013-0631-9

    Article  Google Scholar 

  4. Y. Chao, W. Zhu, B. Yan et al., J. Appl. Polym. Sci. (2014). doi:10.1002/app.40561

    Google Scholar 

  5. M. Zhao, Y. Fu, H. Ma et al., J. Mater. Sci. Mater. Electron. 26, 7882 (2015). doi:10.1007/s10854-015-3439-8

    Article  Google Scholar 

  6. G. Jacome-Acatitla, F. Tzompantzi, R. Lopez-Gonzalez, C. Garcia-Mendoza, J.M. Alvaro, R. Gomez, J. Photochem. Photobiol. A Chem. 277, 82 (2014). doi:10.1016/j.jphotochem.2013.12.014

    Article  Google Scholar 

  7. D. Zhou, Z. Xu, S. Dong et al., Environ. Sci. Technol. 49, 7776 (2015). doi:10.1021/acs.est.5b00989

    Article  Google Scholar 

  8. I. Yahiaoui, F. Aissani-Benissad, F. Fourcade, A. Amrane, Chem. Eng. J. 221, 418 (2013). doi:10.1016/j.cej.2013.01.091

    Article  Google Scholar 

  9. G.R. Bardajee, A. Pourjavadi, S. Ghavami, R. Soleyman, F. Jafarpour, J. Photochem. Photobiol. B Biol. 102, 232 (2011). doi:10.1016/j.jphotobiol.2010.12.008

    Article  Google Scholar 

  10. H. Li, J. Zhou, X. Lu et al., J. Mater. Sci. Mater. Electron. 26, 7723 (2015). doi:10.1007/s10854-015-3416-2

    Article  Google Scholar 

  11. Z. Lu, F. Chen, M. He et al., Chem. Eng. J. 249, 15 (2014). doi:10.1016/j.cej.2014.03.077

    Article  Google Scholar 

  12. T. Wang, F. Zhang, G. Xiao, S. Zhong, C. Lu, Photochem. Photobiol. 91, 291 (2015). doi:10.1111/php.12409

    Article  Google Scholar 

  13. M. Aliabadi, J. Mater. Sci. Mater. Electron. 26, 8892 (2015). doi:10.1007/s10854-015-3570-6

    Article  Google Scholar 

  14. B.M. Rajbongshi, S.K. Samdarshi, B. Boro, J. Mater. Sci. Mater. Electron. 26, 377 (2015). doi:10.1007/s10854-014-2410-4

    Article  Google Scholar 

  15. S. Zhong, F. Zhang, W. Lu, T. Wang, L. Qu, RSC Adv. (2015). doi:10.1039/c5ra08538a

    Google Scholar 

  16. L.J. Fei, Z.Y. Zhou, S.P. Hui, X.L. Dong, J. Mater. Sci. Mater. Electron. 26, 6843 (2015). doi:10.1007/s10854-015-3299-2

    Article  Google Scholar 

  17. Y. Liu, R. Cai, T. Fang, J. Wu, A. Wei, Mater. Res. Bull. 66, 96 (2015). doi:10.1016/j.materresbull.2015.02.032

    Article  Google Scholar 

  18. S.-P. Hu, C.-Y. Xu, L. Zhen, Mater. Lett. 95, 117 (2013). doi:10.1016/j.matlet.2012.12.058

    Article  Google Scholar 

  19. S.-P. Hu, C.-Y. Xu, W.-S. Wang, F.-X. Ma, L. Zhen, Ceram. Int. 40, 11689 (2014). doi:10.1016/j.ceramint.2014.03.179

    Article  Google Scholar 

  20. X. Lin, Z. Liu, X. Guo et al., Mater. Sci. Eng. B 188, 35 (2014). doi:10.1016/j.mseb.2014.06.005

    Article  Google Scholar 

  21. L. Zhang, H. Wang, Z. Chen, P.K. Wong, J. Liu, Appl. Catal. B 106, 1 (2011). doi:10.1016/j.apcatb.2011.05.008

    Google Scholar 

  22. G.-Y. Zhang, Y. Feng, Q.-S. Wu, Y.-Y. Xu, D.-Z. Gao, Mater. Res. Bull. 47, 1919 (2012). doi:10.1016/j.materresbull.2012.04.023

    Article  Google Scholar 

  23. Y. Chen, C. Xing, S. Ji, H. Liang, J. Fuel Chem. Technol. 42, 978 (2014). doi:10.1016/S1872-5813(14)60040-2

    Article  Google Scholar 

  24. P. Vahdatkhah, H.R.M. Hosseini, A. Khodaei et al., Chem. Phys. 453, 35 (2015). doi:10.1016/j.chemphys.2015.03.007

    Article  Google Scholar 

  25. A. Mehrdad, Z. Niknam, Fluid Phase Equilib. 391, 72 (2015). doi:10.1016/j.fluid.2015.02.004

    Article  Google Scholar 

  26. R. Kaur, S.K. Tripathi, Microelectron. Eng. 133, 59 (2015). doi:10.1016/j.mee.2014.11.010

    Article  Google Scholar 

  27. T. Wang, G. Xiao, C. Li, S. Zhong, F. Zhang, Mater. Lett. 138, 81 (2015). doi:10.1016/j.matlet.2014.09.106

    Article  Google Scholar 

  28. F.-J. Zhang, S.-F. Zhu, F.-Z. Xie, J. Zhang, Z.-D. Meng, Sep. Purif. Technol. 113, 1 (2013). doi:10.1016/j.seppur.2013.04.008

    Article  Google Scholar 

  29. C. Wang, L. Zhu, C. Chang, Y. Fu, X. Chu, Catal. Commun. 37, 92 (2013). doi:10.1016/j.catcom.2013.03.038

    Article  Google Scholar 

  30. M.-S. Gui, W.-D. Zhang, Q.-X. Su, C.-H. Chen, J. Solid State Chem. 184, 1977 (2011). doi:10.1016/j.jssc.2011.05.057

    Article  Google Scholar 

  31. Z.-Q. Li, X.-T. Chen, Z.-L. Xue, J. Colloid Interface Sci. 394, 69 (2013). doi:10.1016/j.jcis.2012.12.002

    Article  Google Scholar 

  32. P. Ju, P. Wang, B. Li et al., Chem. Eng. J. 236, 430 (2014). doi:10.1016/j.cej.2013.10.001

    Article  Google Scholar 

  33. Z. Zhang, W. Wang, L. Wang, S. Sun, ACS Appl. Mater. Interfaces 4, 593 (2012). doi:10.1021/am2017199

    Article  Google Scholar 

  34. Y. Hao, F. Li, F. Chen, M. Chai, R. Liu, X. Wang, Mater. Lett. 124, 1 (2014). doi:10.1016/j.matlet.2014.03.036

    Article  Google Scholar 

  35. D.K. Ma, M.L. Guan, S.S. Liu et al., Dalton Trans. 41, 5581 (2012). doi:10.1039/c2dt30099k

    Article  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by National Natural Science Foundation of China (Grant No. 41472214), also funded by Graduate Innovation Fund of Jilin University (No. 2015027) and Jilin Provincial Science & Technology Department (Grant No. 20150204050SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Zhang, F., Yu, B. et al. Synthesis of PVP-Bi2WO6 photocatalyst and degradation of tetracycline hydrochloride under visible light. J Mater Sci: Mater Electron 27, 3011–3020 (2016). https://doi.org/10.1007/s10854-015-4123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4123-8

Keywords

Navigation