Skip to main content
Log in

Co-doped ZnO: synthesis and structural, electrical and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the synthesis, crystal structure and electrical conductivity properties of Co-doped ZnO powders (in the range of 0.25–15 mol%). I-phase samples, which were indexed as single phase with a hexagonal (wurtzite) structure in the Co-doped ZnO system, were determined by X-ray diffraction. The solubility limit of Co ions in the ZnO structure was found to be 15 mol% at after heating at 950 °C. The impurity phase was determined to be Co3O4 at lower temperatures than 950 °C. The research focused on single I-phase samples which were synthesized at 950 °C. For I-phase samples (after heating at 950 °C), the lattice parameters a and c decreased with increasing Co concentration. Electrical conductivity of undoped ZnO and 15 mol% Co-doped ZnO (after heating at 950 °C) were found to be 7.8*10−7 and 1.05*10−4 Ω−1 cm−1, respectively, at 25 °C and 1.15 and 37.15 Ω−1 cm−1, respectively, at 950 °C. Thus, it appears that electrical conductivity slightly increases with Co doping. Also, activation energy of the all I-phase samples (after heating at 950 °C) was calculated and the values were found to be range from 0.774 to 1.201 eV. UV/vis absorption spectras of undoped and the all I-phase samples (after heating at 950 °C) were recorded and optical band gap values were found to be between 3.351 and 3.416 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Ghosh, P. Srivastava, B. Pandey, M. Saurav, P. Bharadwaj, D.K. Avasthi, D. Kabiraj, S.M. Shivaprasad, Appl. Phys. A 90, 765 (2008)

    Article  Google Scholar 

  2. B.J. Copa B, Phd. Dissertation, North Carolina State University, USA, 2003

  3. F. Fang, A.M.C. Ng, X.Y. Chen, A.B. Djurisic, Y.C. Zhong, K.S. Wong, P.W.K. Fong, H.F. Lui, C. Surya, W.K. Chan, Mater. Chem. Phys. 125, 323 (2011)

    Article  Google Scholar 

  4. R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. Gabor, L. Ciontea, T. Petrisor, Ceram. Int. 39, 5535 (2013)

    Article  Google Scholar 

  5. A. Sawalha, M. Abu-Abdeen, A. Sedky, Phys. B Condens. Matter. 404, 1316 (2009)

    Article  Google Scholar 

  6. P. Nunes, E. Fortunato, P. Vilarinho, R. Martins, Vacuum 64, 281 (2002)

    Article  Google Scholar 

  7. R. Wang, A.S. Sleight, Chem. Mater. 8, 433 (1996)

    Article  Google Scholar 

  8. H. Colak, O. Turkoglu, Mater. Sci. Semicond. Proc. 16, 712 (2013)

    Article  Google Scholar 

  9. L. Wang, Y. Pu, W. Fang, J. Dai, C. Zheng, C. Mo, C. Xiong, Thin Solid Films 491, 323 (2005)

    Article  Google Scholar 

  10. G.Y. Ahn, S.I. Park, S.J. Kim, C.S. Kim, J. Magn. Magn. Mater. 304, 498 (2006)

    Article  Google Scholar 

  11. A.Y. Polyakov, A.V. Govorkov, N.B. Smirnov, N.V. Pashkova, S.J. Pearton, K. Ip, R.M. Frazier, C.R. Abernathy, D.P. Norton, J.M. Zavada, R.G. Wilson, Mater. Sci. Semicond. Process 7, 77 (2004)

    Article  Google Scholar 

  12. X. Mao, W. Zhong, Y. Du, J. Magn. Magn. Mater. 320, 1102 (2008)

    Article  Google Scholar 

  13. G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, J. Xu, J. Magn. Magn. Mater. 302, 340 (2006)

    Article  Google Scholar 

  14. X. Feng, J. Phys. Condens. Matter 16, 4251 (2004)

    Article  Google Scholar 

  15. S.J. Pearton, D.P. Norton, M.P. Mill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, IEEE Trans. Electron Devices 54, 1040 (2007)

    Article  Google Scholar 

  16. S. Thota, T. Dutta, J. Kumar, J. Phys. Condens. Matter 18, 2473 (2006)

    Article  Google Scholar 

  17. L.C. Damonte, M.A. Hernandez-Fenollosa, M. Meyer, L. Mendoza-Zelis, B. Mari, Phys. B 398, 380 (2007)

    Article  Google Scholar 

  18. Y. Wang, L. Sun, L.G. Kong, J.F. Kang, X. Zhang, R.H. Han, J. Alloy. Compd. 423, 256 (2006)

    Article  Google Scholar 

  19. M. Wei, D. Zhi, L. Judith, D. Macmanus, Scripta Mater. 54, 817 (2006)

    Article  Google Scholar 

  20. C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, J.M.D. Coey, Appl. Surf. Sci. 247, 493 (2005)

    Article  Google Scholar 

  21. S. Yilmaz, O. Turkoglu, I. Belenli, Mater. Chem. Phys. 112, 472 (2008)

    Article  Google Scholar 

  22. S. Husain, L.A. Alkhtaby, E. Giorgetti, A. Zoppi, M.M. Miranda, J. Lumin. 145, 132 (2014)

    Article  Google Scholar 

  23. H. Colak, J. Mater. Sci. Mater. Electron 26, 784 (2015)

    Article  Google Scholar 

  24. A.J. Chen, X.M. Wu, Z.D. Sha, L.J. Zhuge, Y.D. Meng, J. Phys. D Appl. Phys. 39, 4762 (2006)

    Article  Google Scholar 

  25. N.T.T. Hien, N.X. Dai, N.A. Tuan, V.N. Thuc, V.T. Son, P.T. Mai, Proceedings of the Eighth German-Vietnamse Seminar on Physics and Engineering, Erlangen, 3–8 April 2005

  26. H. Colak, O. Turkoglu, J. Mater. Sci. Technol. 27, 944 (2011)

    Article  Google Scholar 

  27. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  28. R.C. Weast, Handbook of chemistry and physics, 56. ed., Crc Press, Florida, 1975–1976

  29. S.Y. Chu, T.M. Yan, S.L. Chen, Ceram. Int. 26, 733 (2000)

    Article  Google Scholar 

  30. X.X. Wei, C. Song, K.W. Geng, F. Zeng, B. He, F. Pan, J. Phys. Condens. Matter 18, 7471 (2006)

    Article  Google Scholar 

  31. S. Yilmaz, O. Turkoglu, M. Ari, I. Belenli, Ceramica 57, 185 (2011)

    Google Scholar 

  32. D.K. Schroder, Semiconductor Material and Device Characterization, 3:8 (John Wiley & Sons, USA, 2006)

    Google Scholar 

  33. M. Girtan, G.G. Rusu, S.D. Seignon, M. Rusu, Appl. Surf. Sci. 254, 4179 (2008)

    Article  Google Scholar 

  34. H. Colak, O. Turkoglu, Synthesis. J. Mater. Sci. Technol. 28, 268 (2012)

    Article  Google Scholar 

  35. J. Han, A.M.R. Senos, P.Q. Mantas, J. Eur. Ceram. Soc. 22, 49 (2002)

    Article  Google Scholar 

  36. M.S. Hossain, R. Islam, K.A. Khan, Chalcogenide Lett. 5, 1 (2008)

    Google Scholar 

  37. Y. Natsume, H. Sakata, Thin Solid Films 372, 30 (2000)

    Article  Google Scholar 

  38. R. Kumar, N. Khare, Thin Solid Films 516, 1302 (2008)

    Article  Google Scholar 

  39. J. El Ghoul, M. Kraini, O.M. Lemine, L. El Mir, J. Mater. Sci. Mater. Electron 26, 732 (2015)

    Google Scholar 

  40. J. Diouri, J.P. Lascaray, M.E. Amrani, Phys. Rev. B Condens. Matter 31, 7995 (1985)

    Article  Google Scholar 

  41. G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, J. Mater. Sci. Mater. Electron. 26, 3346 (2015)

    Google Scholar 

  42. G. Singh, S.B. Shrivastava, V. Ganesan, J. Chem. Eng. Mat. Sci. 4, 1 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Research Foundation of Erciyes University (Kayseri, Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Çolak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çolak, H., Türkoğlu, O. Co-doped ZnO: synthesis and structural, electrical and optical properties. J Mater Sci: Mater Electron 26, 10141–10150 (2015). https://doi.org/10.1007/s10854-015-3700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3700-1

Keywords

Navigation