Skip to main content
Log in

Synthesis and enhanced photoreactivity of metallic Bi-decorated BiOBr composites with abundant oxygen vacancies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, a simple one-pot solvothermal strategy was put forward to obtain metal Bi-decorated BiOBr composites (Bi/BiOBr) with abundant oxygen vacancies. The metal Bi (Bi0) can be deposited into the BiOBr surface via reduction of glycerol solvent in solvothermal process. Precipitation of Bi on surface of BiOBr turned the morphologies of BiOBr from regular flower-like hierarchical architectures to scattered sheets with increase of Bi content, enhanced photoabsorption of BiOBr in whole light region. Interestingly, deposition of metallic Bi (Bi0) on the BiOBr surface could lead to formation of abundant surface oxygen vacancies. As-synthesized Bi/BiOBr composites showed better photocatalytic activity for phenol degradation under sunlight irradiation, as compared with that of BiOBr reference. The enhancement of photocatalytic activities for Bi/BiOBr composites can be attributed to the existence of Bi/BiOBr hetero-structure and abundant oxygen vacancies (as active electron trap), which causing efficient separation of electron–hole pairs in Bi/BiOBr composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  2. E. Bae, W. Choi, Environ. Sci. Technol. 37, 147–152 (2002)

    Article  Google Scholar 

  3. J.W. Tang, Z.G. Zou, J.H. Ye, Angew. Chem. Int. Edit. 43, 4463–4466 (2004)

    Article  Google Scholar 

  4. K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Appl. Catal. B 68, 125–129 (2006)

    Article  Google Scholar 

  5. C. Liu, B. Chai, J. Mater. Sci. Mater. Electron. 26(4), 2296–2304 (2015)

    Article  Google Scholar 

  6. Y.Y. Zhang, J.P. Hu, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 102, 106401 (2009)

    Article  Google Scholar 

  7. W. Wu, Y.H. Chen, H.S. Tao, N.H. Tong, W.M. Liu, Phys. Rev. B 82, 245102 (2010)

    Article  Google Scholar 

  8. A.C. Ji, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 99, 183602 (2007)

    Article  Google Scholar 

  9. J. Zhang, F.J. Shi, J. Lin, D.F. Chen, J.M. Gao, Z. Huang, X.X. Ding, C.C. Tang, Chem. Mater. 20, 2937–2941 (2008)

    Article  Google Scholar 

  10. M. Shang, W.Z. Wang, L. Zhang, J. Hazard. Mater. 67, 803–809 (2009)

    Article  Google Scholar 

  11. Z.H. Ai, W.K. Ho, S.C. Lee, L. Zhang, Environ. Sci. Technol. 43, 4143–4150 (2009)

    Article  Google Scholar 

  12. C.L. Yu, F.F. Cao, G. Li, R.F. Wei, C.Y. Jimmy, R.C. Jin, Q.Z. Fan, C.Y. Wang, Sep. Purif. Technol. 120, 110–122 (2013)

    Article  Google Scholar 

  13. C.L. Yu, C.F. Fan, X.J. Meng, K. Yang, F.F. Cao, X. Li, React. Kinet. Mech. Catal. 103, 141–151 (2011)

    Article  Google Scholar 

  14. Z.S. Liu, B.T. Wu, Y.B. Zhu, D.G. Yin, L.G. Wang, Catal. Lett. 142, 1489–1497 (2012)

    Article  Google Scholar 

  15. G.H. Jiang, X.H. Wang, X.G. Xi, R.B. Hu, X. Li, Z. Wei, B.L. Tang, R.J. Wang, S. Wang, T. Wang, W.X. Chen, J. Mater. Chem. A 1, 2406–2410 (2013)

    Article  Google Scholar 

  16. X. Li, G.H. Jiang, Z. Wei, X.H. Wang, W.X. Chen, L. Shen, MRS Commun. 3, 219–224 (2013)

    Article  Google Scholar 

  17. H.F. Cheng, B.B. Huang, Y. Dai, X.Y. Qin, X.Y. Zhang, Langmuir 26, 6618–6624 (2010)

    Article  Google Scholar 

  18. W.D. Wang, F.Q. Huang, X.P. Lin, Scr. Mater. 56, 669–672 (2007)

    Article  Google Scholar 

  19. W.D. Wang, F.Q. Huang, X.P. Lin, J.H. Yang, Catal. Commun. 9, 8–12 (2008)

    Article  Google Scholar 

  20. Y. Huo, J. Zhang, M. Miao, Y. Jin, Appl. Catal. B 111–112, 334–341 (2012)

    Article  Google Scholar 

  21. J. Xu, W. Meng, Y. Zhang, L. Li, C. Guo, Appl. Catal. B 107, 355–362 (2011)

    Article  Google Scholar 

  22. H.F. Cheng, B.B. Huang, Z.Y. Wang, X.Y. Qin, X.Y. Zhang, Y. Dai, Chem. Eur. J. 17, 8039–8043 (2011)

    Article  Google Scholar 

  23. D. Zhang, J. Li, Q. Wang, Q. Wu, J. Mater. Chem. A 1, 8622–8629 (2013)

    Article  Google Scholar 

  24. H.P. Li, J.Y. Liu, X.F. Liang, W.G. Hou, X.T. Tao, J. Mater. Chem. A 2, 8926–8932 (2014)

    Article  Google Scholar 

  25. L.L. Li, L.H. Ai, C.H. Zhang, J. Jiang, Nanoscale 6, 4627–4634 (2014)

    Article  Google Scholar 

  26. J. Cao, B.Y. Xu, H.L. Lin, B.D. Luo, S.F. Chen, Dalton Trans. 41, 11482–11490 (2012)

    Article  Google Scholar 

  27. Y.Y. Liu, W.J. Son, J.B. Lu, B.B. Huang, Y. Dai, M.H. Wangbo, Chem. Eur. J. 17, 9342–9349 (2011)

    Article  Google Scholar 

  28. Z.H. Ai, L.Z. Zhang, S.C. Lee, W.K. Ho, J. Phys. Chem. C 113, 20896–20902 (2009)

    Article  Google Scholar 

  29. H.C. Ma, K. Teng, Y.H. Fu, Y. Song, Y.W. Wang, X.L. Dong, Energy Environ. Sci. 4, 3067–3074 (2011)

    Article  Google Scholar 

  30. X.W. Liu, H.Q. Cao, J.F. Yin, Nano Res. 4, 470–482 (2011)

    Article  Google Scholar 

  31. S.X. Weng, B.B. Chen, L.Y. Xie, Z.Y. Zheng, P. Liu, J. Mater. Chem. A 1, 3068–3075 (2013)

    Article  Google Scholar 

  32. Y. Yu, C.Y. Cao, H. Liu, P. Li, F.F. Wei, Y. Jiang, W.G. Song, J. Mater. Chem. A. 2, 1677–1681 (2014)

    Article  Google Scholar 

  33. C. Chang, L.Y. Zhu, Y. Fu, X.L. Chu, Chem. Eng. J. 233, 305–314 (2013)

    Article  Google Scholar 

  34. F. Dong, Q.Y. Li, Y.J. Sun, W.K. Ho, ACS Catal. 4, 4341–4350 (2014)

    Article  Google Scholar 

  35. U. Pal, J. Garcia-Serrano, G. Casarrubias-Segura, N. Koshizaki, T. Sasaki, S. Terahuchi, Sol. Energ. Mat. Sol. C 81, 339–348 (2004)

    Article  Google Scholar 

  36. J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, J. Am. Chem. Soc. 134, 4473–4476 (2012)

    Article  Google Scholar 

  37. L. Ye, L. Tian, T. Peng, L. Zan, J. Mater. Chem. 21, 12479–12484 (2011)

    Article  Google Scholar 

  38. L.Q. Ye, L. Zan, L.H. Tian, T.Y. Peng, J.J. Zhang, Chem. Commun. 47, 6951–6953 (2011)

    Article  Google Scholar 

  39. A.A. Vostrikov, O.N. Fedyaeva, A.V. Shishkin, M.Y. Sokol, J. Supercrit. Fluid 48, 161–166 (2009)

    Article  Google Scholar 

  40. A.V. Tripkovic, K.D. Popovic, R.M. Stevanovic, R. Socha, A. Kowal, Electrochem. Commun. 8, 1492–1498 (2006)

    Article  Google Scholar 

  41. S.H. Li, Y. Zhao, J. Chu, W.W. Li, H.Q. Yu, G. Liu, Electrochim. Acta 92, 93–101 (2013)

    Article  Google Scholar 

  42. Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Inorg. Chem. 46, 6980–6986 (2007)

    Article  Google Scholar 

  43. L. Ge, Mater. Chem. Phys. 107, 465–470 (2008)

    Article  Google Scholar 

  44. Z.J. Zhang, W.Z. Wang, E.P. Gao, M. Shang, J.H. Xu, J. Hazard. Mater. 196, 255–262 (2011)

    Article  Google Scholar 

  45. M. Naeem, S.K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S.I. Shah, Nanotechnology 17, 2675–2680 (2006)

    Article  Google Scholar 

  46. H.Y. Jiang, H.X. Dai, X. Meng, K.M. Ji, L. Zhang, J.G. Deng, Appl. Catal. B 105, 326–334 (2011)

    Article  Google Scholar 

  47. J.P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Qin, X.Y. Zhang, Y. Dai, ACS Appl. Mater. Inter. 4, 4024–4030 (2012)

    Article  Google Scholar 

  48. L.Q. Jing, Z.L. Xu, J. Shang, X.J. Sun, W.M. Cai, H.C. Guo, Mat. Sci. Eng. A 332, 356–361 (2002)

    Article  Google Scholar 

  49. L.Q. Jing, Y.G. Zheng, Z.L. Xu, F.X. Dong, X.J. Sun, W.M. Cai, Y.K. Xu, Chem. J. Chin. Univ. 22, 1885–1888 (2001). (in Chinese)

    Google Scholar 

  50. M. Batzill, E.H. Morales, U. Diebold, Chem. Phys. 339, 36–43 (2007)

    Article  Google Scholar 

  51. C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D Appl. Phys. 42, 205101–205105 (2009)

    Article  Google Scholar 

  52. G. Liu, H.G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G.Q. Lu, H.M. Cheng, J. Phys. Chem. C 113, 21784–21788 (2009)

    Article  Google Scholar 

  53. Y.H. Lv, C.S. Pan, X.G. Ma, R.L. Zong, X.J. Bai, Y.F. Zhu, Appl. Catal. B Environ. 138–139, 26–32 (2013)

    Article  Google Scholar 

  54. C. Feng, Y. Wang, Z. Jin, J. Zhang, S. Zhang, Z. Wu, Z. Zhang, New J. Chem. 32, 1038–1047 (2008)

    Article  Google Scholar 

  55. H.G. Kim, P.H. Borse, W. Choi, J.S. Lee, Angew. Chem. Int. Edit. 117, 4661–4665 (2005)

    Article  Google Scholar 

  56. J.C. Wang, P. Liu, X.Z. Fu, Z.H. Li, W. Han, X.X. Wang, Langmuir 25, 1218–1223 (2009)

    Article  Google Scholar 

  57. Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, J.F. Zhu, Y.J. Zhu, Inorg. Chem. 46, 6675–6682 (2007)

    Article  Google Scholar 

  58. L. Kong, Z. Jiang, H.H.C. Lai, T.C. Xiao, P.P. Edwards, Prog. Nat. Sci. Mater. Int. 23(3), 286–293 (2013)

    Article  Google Scholar 

  59. W.J. An, W.Q. Cui, L. Liu, J.S. Hu, Y.H. Liang, J. Mol. Catal. 27(5), 483–492 (2013). (China)

    Google Scholar 

  60. J. Wang, D.N. Tafen, J.P. Lewis, Z.L. Hong, A. Manivannan, M.J. Zhi, M. Li, N.Q. Wu, J. Am. Chem. Soc. 131, 12290–12297 (2009)

    Article  Google Scholar 

  61. H.H. Wang, C.S. Xie, Phys. E 40, 2724–2729 (2008)

    Article  Google Scholar 

  62. L. Sun, J. Li, C.L. Wang, S.F. Li, Y.K. Lai, H.B. Chen, C.J. Lin, J. Hazard. Mater. 171, 1045–1050 (2009)

    Article  Google Scholar 

  63. V. Subramanian, E. Wolf, P.V. Kamat, J. Phys. Chem. B. 105, 11439–11446 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (21476033), Cultivation Program for Excellent Talents of Science and Technology Department of Liaoning Province (No. 201402610) and Program for Liaoning Excellent Talents in University (LR2014013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghuan Fu or Xiaoli Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Zhao, M., Xing, H. et al. Synthesis and enhanced photoreactivity of metallic Bi-decorated BiOBr composites with abundant oxygen vacancies. J Mater Sci: Mater Electron 26, 10002–10011 (2015). https://doi.org/10.1007/s10854-015-3680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3680-1

Keywords

Navigation