Skip to main content

Advertisement

Log in

Phase transition and energy storage performance in Ba-doped PLZST antiferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Pb0.97−xBaxLa0.02)(Zr0.7Sn0.27Ti0.03) (0 < x < 0.08) antiferroelectric (AFE) ceramics were successfully fabricated by a solid state reaction, and the effect of barium (Ba) additions and temperature on the dielectric properties and energy storage performance were investigated. The ceramics with lower Ba content undergo two phase transitions during heating from room temperature to 300 °C: orthorhombic (O)-rhombohedral (R)-cubic (C). With the increase of Ba content, dielectric constants increased and transition temperature decreased obviously. The ferroelectric phase was induced as the composition x increased from 0 to 0.08, however, which was not stable and transformed into AFE state upon heating, and then paraelectric phase, which was confirmed by DC field dependence of dielectric constant. The polarization sharply increased from 9.7 μC/cm2 at 20 °C to 24. 6μC/cm2 at 100 °C in (Pb0.89Ba0.08La0.02)(Zr0.7Sn0.27Ti0.03) ceramic. As a result, the maximum recovered energy density of 2.1 J/cm3 was obtained at 80 °C, and the corresponding energy-storage efficiency was 76.5 %, which made this material a promising potential application in capacitors for pulsed power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Lu, J. Yuan, Q.L. Zhao, B. Li, Y. Li, M.S. Cao, J. Mater. Sci. Mater. Electron. 24, 2521 (2013)

    Article  Google Scholar 

  2. K. Ramam, A.J. Bell, C.R. Bowen, K. Chandramouli, J. Alloys Compd. 473, 330 (2009)

    Article  Google Scholar 

  3. K. Markowski, S.E. Park, S. Yoshikawa, L.E. Cross, J. Am. Ceram. Soc. 79, 3297 (1996)

    Article  Google Scholar 

  4. R. Rai, S. Mishra, N.K. Singh, J. Alloys Compd. 487, 494 (2009)

    Article  Google Scholar 

  5. S.E. Park, K. Markowski, S. Yoshikawa, L.E. Cross, J. Am. Ceram. Soc. 80, 407 (1997)

    Article  Google Scholar 

  6. H. He, X.L. Tan, Phys. Rev. B 72, 024102 (2005)

    Article  Google Scholar 

  7. F. Xue, L.Y. Liang, Y.J. Gu, I. Takeuchi, S.V. Kalinin, L.Q. Chen, Appl. Phys. Lett. 106, 012903 (2015)

    Article  Google Scholar 

  8. X.F. Chen, H.L. Zhang, F. Cao, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, J. Appl. Phys. 106, 034105 (2009)

    Article  Google Scholar 

  9. X.F. Chen, F. Cao, H.L. Zhang, G. Yu, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, J. Am. Ceram. Soc. 95, 1163 (2012)

    Article  Google Scholar 

  10. A. Mesquita, A. Michalowicz, P.S. Pizani, K. Provost, V.R. Mastelaro, J. Alloys Compd. 582, 680 (2014)

    Article  Google Scholar 

  11. N. Zhang, Y.J. Feng, Z. Xu, Mater. Res. Innov. 15, 240 (2011)

    Article  Google Scholar 

  12. Z. Hu, B. Ma, R.E. Koritala, U. Balachandran, Appl. Phys. Lett. 104, 263902 (2014)

    Article  Google Scholar 

  13. Q.F. Zhang, M.W. Fan, S. Jiang, T.Q. Yang, J.F. Wang, X. Yao, J. Alloys Compd. 551, 279 (2013)

    Article  Google Scholar 

  14. J.F. Wang, T.Q. Yang, S.C. Chen, G. Li, Mater. Res. Bull. 48, 3847 (2013)

    Article  Google Scholar 

  15. Q. Zhang, X.L. Liu, Y. Zhang, X.Z. Song, J. Zhu, I. Baturin, J.F. Chen, Ceram. Int. 41, 3030 (2015)

    Article  Google Scholar 

  16. Y.Y. Li, Q. Li, Q.F. Yan, Y.L. Zhang, X.Q. Xi, X.C. Chu, W.W. Cao, Appl. Phys. Lett. 101, 132904 (2012)

    Article  Google Scholar 

  17. W. Chan, Z. Xu, J.W. Zhai, E. Colla, H. Chen, J. Electron. Ceram. 21, 145 (2008)

    Google Scholar 

  18. C. Cho, D.A. Payne, S. Cho, Appl. Phys. Lett. 71, 3013 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51272178) and the Innovation Program of Shanghai Municipal Education Commission (No. 14ZZ041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongqing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shen, J., Yang, T. et al. Phase transition and energy storage performance in Ba-doped PLZST antiferroelectric ceramics. J Mater Sci: Mater Electron 26, 9200–9204 (2015). https://doi.org/10.1007/s10854-015-3612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3612-0

Keywords

Navigation