Skip to main content
Log in

Synthesis of long Ag nanowires and its application in GaN nanowires photodetector as transparent electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The novel successive microwave-assisted multistep growth (SMMG) method to rapidly synthesis of long Ag nanowires was reported. The SEM images showed that AgNWs produced by SMMG method were more than 50 μm, while by a single-step microwave, AgNWs shortened to 15 μm. The by-product of silver particles is often simultaneously produced. AgNWs with high quality can be synthesized in a single run easily using the straightward purified technique. Using this process it is possible to fabricate transparent flexible electrodes with sheet resistance of about 64 Ω/□ and transparency of 87 % in the visible range by spin coating. High-density and randomly oriented GaN NWs were prepared by a chemical vapor deposition reaction between Ga and NH3 on Si substrates using Ni as catalyst. Long Ag NWs used as transparent flexible electrodes were coated on GaN NWs ensembely to fabricate the fully-NWs-based photodetector. To the best of our knowledge, it is the first time to report GaN NWs based photodetector relying on Ag NWs electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.R. Madaria, A. Kumar, C. Zhou, Nanotechnology 22, 245201 (2011)

    Article  Google Scholar 

  2. J. Jiu, T. Araki, J. Wang, M. Nogi, T. Sugahara, S. Nagao, H. Koga, K. Suganuma, E. Nakazawa, M. Hara, H. Uchida, K. Shinozaki, J. Mater. Chem. A. 2, 6326 (2014)

    Article  Google Scholar 

  3. D.-S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C.D. Mello, Adv. Mater. 23, 4371 (2011)

    Article  Google Scholar 

  4. C.-H. Kim, S.-H. Cha, S.C. Kim, M. Song, J. Lee, W.S. Shin, S.-J. Moon, J.H. Bahng, N.A. Kotov, S.-H. Jin, ACS Nano 5, 3319 (2011)

    Article  Google Scholar 

  5. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Adv. Mater. 23, 664 (2011)

    Article  Google Scholar 

  6. S. El-Gamal, J. Mater. Sci. Mater. Electron. 24, 4311 (2013). doi:10.1007/s10854-013-1403-z

    Article  Google Scholar 

  7. H. Imahori, M. Kimura, K. Hosomizu, T. Sato, T.K. Ahn, S.K. Kim, D. Kim, Y. Nishimura, I. Yamazaki, Y. Araki, O. Ito, S. Fukuzumi, Chem. Eur. J. 10, 5111 (2004)

    Article  Google Scholar 

  8. X.-Y. Sun, F.-Q. Xu, Z.-M. Li, W.-H. Zhang, Chem. Phys. 90, 69 (2005)

    Google Scholar 

  9. Y. Zhou, S.H. Yu, C.Y. Wang, X.G. Li, Y.R. Zhu, Z.Y. Chen, Adv. Mater. 11, 850 (1999)

    Article  Google Scholar 

  10. Y. Yang, Y. Hu, X. Xiong, Y. Qin, RSC Adv. 3, 8431 (2013)

    Article  Google Scholar 

  11. L. Gou, M. Chipara, J.M. Zaleski, Chem. Mater. 19, 1755 (2007)

    Article  Google Scholar 

  12. Y.-C. Chen, J. Cheng, J. Cheng, S. Cheng, J. Mater. Sci. Mater. Electron. 26, 2775 (2015). doi:10.1007/s10854-015-2758-0

    Article  Google Scholar 

  13. Y. Sun, B. Gates, B. Mayers, Y. Xia, Nano Lett. 2, 165 (2002)

    Article  Google Scholar 

  14. C. Mayousse, C. Celle, E. Moreau, J.-F. Mainguet, A. Carella, J.-P. Simonato, Nanotechnology 24, 215501 (2013)

    Article  Google Scholar 

  15. Y. Wang, C. Xue, H. Zhuang, Z. Wang, D. Zhang, Y. Huang, W. Liu, Appl. Surf. Sci. 255, 7719 (2009)

    Article  Google Scholar 

  16. X. Wei, F. Shi, Appl. Surf. Sci. 257, 9931 (2011)

    Article  Google Scholar 

  17. S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, Chem. Phys. Lett. 389, 176 (2004)

    Article  Google Scholar 

  18. M.S. Sona, S.I. Im, Y.S. Park, C.M. Park, T.W. Kang, K.-H. Yoo, Mater. Sci. Eng. C 26, 886 (2006)

    Article  Google Scholar 

  19. G.A. Gelves, B. Lin, U. Sundararaj, J.A. Haber, Adv. Funct. Mater. 16, 2423 (2006)

    Article  Google Scholar 

  20. S. Singh, A. Bharti, V.K. Meena, J. Mater. Sci. Mater. Electron. 25, 3747 (2014). doi:10.1007/s10854-015-2881-y

  21. B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J. 11, 454 (2005)

    Article  Google Scholar 

  22. J.H. Lee, P. Lee, D. Lee, S.S. Lee, S.H. Ko, Growth Des. 12, 5598 (2012)

    Article  Google Scholar 

  23. J.H. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Nanoscale 4, 6408 (2012)

    Article  Google Scholar 

  24. J. Lee, I. Lee, T.-S. Kim, J.-Y. Lee, Small 17, 2887 (2013)

    Article  Google Scholar 

  25. J.K. Jian, X.L. Chen, Q.Y. Tu, Y.P. Xu, L. Dai, M. Zhao, J. Phys. Chem. B. 108, 12024 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under Grant (11275144 and J 1210061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianquan Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Liu, Y., Wan, X. et al. Synthesis of long Ag nanowires and its application in GaN nanowires photodetector as transparent electrodes. J Mater Sci: Mater Electron 26, 6787–6792 (2015). https://doi.org/10.1007/s10854-015-3290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3290-y

Keywords

Navigation