Skip to main content
Log in

Synthesis and characterization of Ba0.5Co0.5Fe2O4 nanoparticle ferrites: application as electrochemical sensor for ciprofloxacin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spinel structured Ba0.5Co0.5Fe2O4 nanoparticles were synthesized using glycol thermal technique. The spinel phase structure was confirmed by means of X-ray powder diffraction. High-resolution transmission electron microscopy and high-resolution scanning electron microscopy were used to investigate the morphology of the sample. The Brunauer–Emmet–Teller surface area measurement revealed high surface area of 137 m2/g of the sample. Barrett–Joyner–Halenda measurement confirmed the mesoporous character of the synthesized nanoparticles. Further, the Ba0.5Co0.5Fe2O4 nanoparticles were used to develop a highly sensitive sensor for voltammetric determination of ciprofloxacin. The Ba0.5Co0.5Fe2O4 nanoparticles modified electrode displayed excellent electrocatalytic activity towards the oxidation of ciprofloxacin in a linear concentration range from 1.0 × 10−8 to 0.5 × 10−3 M and a detection limit of 5.8 nM. Possible interference by various excipients usually present in pharmaceutical formulations was evaluated. The feasibility of the proposed method was successfully evaluated in pharmaceutical formulations, suggesting potential application of the modified electrode as an electrochemical sensor for ciprofloxacin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. G.A. El-Shobaky, A.M. Turky, N.Y. Mostafa, S.K. Mohamed, J. Alloys Compd. 493, 415 (2010)

    Article  Google Scholar 

  2. X. Li, C. Xu, X. Han, L. Qiao, T. Wang, F. Li, Nanoscale Res. Lett. 5, 1044 (2010)

    Google Scholar 

  3. J.T. Han, K.J. Huang, J. Li, Y.M. Liu, M. Yu, Colloids Surf. B 98, 58 (2012)

    Article  Google Scholar 

  4. L. Cui, P. Guo, Peizhi, G. Zhang, Q. Li, R. Wang, M. Zhou, L. Ran, X.S. Zhao, Colloids Surf. A 423, 170 (2013)

    Article  Google Scholar 

  5. M. Shizuya, M. Isobe, E. Takayama-Muromachi, J. Solid State Chem. 180, 22557 (2007)

    Google Scholar 

  6. J. Qiu, L. Le, M. Gu, Mat. Sci. Eng. A: Struct. 393, 365 (2005)

    Article  Google Scholar 

  7. O. Palchik, J. Zhua, A. Gedanken, J. Mater. Chem. 10, 1251 (2000)

    Article  Google Scholar 

  8. J.M. Nelson, T.M. Chiller, J.H. Powers, F.J. Angulo, Clin. Infect. Dis. 44, 977 (2007)

    Article  Google Scholar 

  9. M. Adorka, M. Lubbe, J. Serfontein, K. Allen, H.M. Kabwebwe, Trop. J. Pharm. Res. 12, 1029 (2013)

    Article  Google Scholar 

  10. V.S. Saraswathi, J. Padmavathy, B. Mamatha, N.H.S. Bindu, S. Vijayalakshmi, Int. J. Pharm. Tech. Res. 2, 2044 (2010)

    Google Scholar 

  11. G.K. Kim, J.Q. Del Rosso, J. Clin. Aesthet. Dermatol. 3, 49 (2010)

    Google Scholar 

  12. M.G. Upadya, K. Ruxana, Indian J. Med. Sci. 63, 461 (2009)

    Article  Google Scholar 

  13. J. Hallgren, M. Tengvall-Linder, M. Persson, C.F. Wahlgren, J. Am. Acad. Dermatol. 49, S267 (2003)

    Article  Google Scholar 

  14. Md Chaudhry, N. Tarneja, A. Gundale, D. Roa, R. Levey, Am. J. Ther. 17, 167 (2010)

    Article  Google Scholar 

  15. C. Alan, H. Koçoğlu, A.R. Ersay, Y. Ertung, H.A. Kurt, Drug Chem. Toxicol. 34, 189 (2011)

    Article  Google Scholar 

  16. M.H.R. Amorim, K.L. Marques, J.L.M. Santos, J.F.C. Lima, Anal. Lett. 44, 2074 (2011)

    Article  Google Scholar 

  17. K. Basavaiah, P. Nagegowda, Nat. Acad. Sci. Lett. 29, 189 (2006)

    Google Scholar 

  18. S.N. Shtykov, T.D. Smirnova, Y.G. Bylinkin, N.V. Kalashnikova, D.A. Zhemerichkin, J. Anal. Chem. 62, 136 (2007)

    Article  Google Scholar 

  19. B. Aksoy, I. Kucukguzel, S. Rollas, Chromatographia 66, S57 (2007)

    Article  Google Scholar 

  20. B. Shrestha, H. Basnett, S.S. Patel, R. Karki, S. Agarwal, R. Mazumder, B. Stephenrathinaraj, Res. J. Pharm. Technol. 3, 221 (2010)

    Google Scholar 

  21. A.A. Ensafi, A.R. Allafchian, R. Mohammadzadeh, Anal. Sci. 28, 705 (2012)

    Article  Google Scholar 

  22. M. Malviya, J.P. Singh, R.N. Singh, Indian J. Chem. A 44A, 2233 (2005)

    Google Scholar 

  23. V.L.E. Simonsen, D. Find, M. Lilliedal, R. Petersen, K. Kammer, Top. Catal. 45, 143 (2007)

    Article  Google Scholar 

  24. V.A. Kumary, J. Divya, T.E.M. Nancy, K. Sreevalsan, Int. J. Electrochem. Sci. 8, 6610 (2013)

    Google Scholar 

  25. A.K. Vidyadharan, D. Jayan, T.E.M. Nancy, J. Solid State Electrochem. 18, 2513 (2014)

    Article  Google Scholar 

  26. M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, S. Nithiyanantham, J. Supercond. Nov. Magn. 26, 725 (2013)

    Article  Google Scholar 

  27. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, Hoboken, 2005), pp. 302–304

    Google Scholar 

  28. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, J. Magn. Magn. Mater. 323, 1745 (2011)

    Article  Google Scholar 

  29. A.A. Pandit, A.R. Shitre, D.R. Shengule, K.M. Jadhav, J. Mat. Sci. 40, 423 (2005)

    Article  Google Scholar 

  30. M. Rajendran, R.C. Pullar, A.K. Bhattachary, D. Das, S.N. Chintalapudi, C.K. Majumdar, J. Magn. Magn. Mater. 232, 83 (2001)

    Article  Google Scholar 

  31. A. Rumplecker, F. Kleitz, E.L. Salabas, F. Schuth, J. Chem. Mater. 19, 485 (2007)

    Article  Google Scholar 

  32. M. Kruk, M. Jaroniec, J. Chem. Mater. 10, 3183 (2001)

    Google Scholar 

  33. P.B. Lihitkar, S. Violet, M. Shirolkar, J. Singhc, O.N. Srivastava, R.H. Naik, S.K. Kulkarni, Mater. Chem. Phys. 133, 856 (2012)

    Article  Google Scholar 

  34. M.S. Wu, C.J. Chung, Z.Z. Ceng, RSC Adv. 5, 4561 (2015)

    Article  Google Scholar 

  35. K. Anuar, W.T. Tan, M.S. Atan, K. Dzulkefly, S.M. Ho, H.M. Jelas, N. Saravanan, Pac. J. Sci. Technol. 8, 252 (2007)

    Google Scholar 

  36. E. Laviron, J. Electroanal. Chem. 112, 11 (1980)

    Article  Google Scholar 

  37. E.R. Brown, R.F. Large, Physical Methods of Chemistry (Wiley, New York, 1964)

    Google Scholar 

  38. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    Article  Google Scholar 

  39. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley Interscience, New York, 2004)

    Google Scholar 

  40. S. Zhang, S. Wei, Bull. Korean. Chem. Soc. 28, 543 (2007)

    Article  Google Scholar 

  41. H. Yi, C. Li, Russ. J. Electrochem. 43, 1377 (2007)

    Article  Google Scholar 

  42. L. Ming, X. Xi, Y. Sun, J. Liu, Chin. J. Antibiot. 34, 767 (2009)

    Google Scholar 

  43. B. Uslu, B. Bozal, M.E. Kuscu, Open Chem. Biomed. Methods J. 3, 108 (2010)

    Article  Google Scholar 

  44. A.A. Ensafi, M. Taei, T. Khayamian, F. Hasanpour, Anal. Sci. 26, 803 (2010)

    Article  Google Scholar 

  45. B.K. Chethana, Y.A. Naik, Inventi Impact Med. Chem. 3, 138 (2012)

    Google Scholar 

  46. V.D. Hoang, T.Y. Nguyen, Trop. J. Pharm. Res. 12, 783 (2013)

    Google Scholar 

  47. F. Zhang, S. Gu, Y. Ding, Z. Zhang, L. Li, Anal. Chim. Acta 770, 53 (2013)

    Article  Google Scholar 

  48. M. Shamsipur, M.B. Gholivand, S. Dehdashtian, M. Feyzi, F. Jafari, Adv. Mater. Res. 829, 563 (2014)

    Article  Google Scholar 

  49. A.N. Kawde, M. Abdul Aziz, N. Odewunmi, N. Hassan, A. Al Sharaa, Arab. J. Sci. Eng. 39, 131 (2014)

    Article  Google Scholar 

  50. R.H.O. Montes, M.C. Marra, M.M. Rodrigues, E.M. Richter, R.A.A. Munoz, Electroanalysis 26, 432 (2014)

    Article  Google Scholar 

  51. N. Diab, I. Abu-Shqair, R. Salim, M. Al-Subu, Int. J. Electrochem. Sci. 9, 1771 (2014)

    Google Scholar 

  52. A.F. Al-Ghamdi, A.D. Bani-Yaseen, Russ. J. Electrochem. 50, 355 (2014)

    Article  Google Scholar 

  53. X. Zhang, Y. Wei, Y. Ding, Anal. Chim. Acta 835, 29 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

NSEO would like to thank Sudan University of Science and Technology for the study leave. NT is grateful to the Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, South Africa, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir S. E. Osman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, N.S.E., Thapliyal, N., Alwan, W.S. et al. Synthesis and characterization of Ba0.5Co0.5Fe2O4 nanoparticle ferrites: application as electrochemical sensor for ciprofloxacin. J Mater Sci: Mater Electron 26, 5097–5105 (2015). https://doi.org/10.1007/s10854-015-3036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3036-x

Keywords

Navigation