Skip to main content
Log in

Microwave-assisted sol–hydrothermal synthesis of tetragonal barium titanate nanoparticles with hollow morphologies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium titanate (BaTiO3; BT) nanoparticles were synthesized via a sol–hydrothermal microwave method, which were tetragonal phase of BT nanoparticles with an average diameter of ~50 nm. The alkalinity of the initial hydrothermal solution considerably influenced the morphologies of the BT powders. Small amount of hollow and ring-like structure was observed at 5 M. The evolution of the time-dependent morphology revealed a possible formation mechanism. An aggregation, re-alignment, and ripening process is proposed to elucidate the formation of nanoparticles with different morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.O. Kang et al., Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction. Cryst. Growth Des. 8(9), 3180–3186 (2008)

    Article  Google Scholar 

  2. R. Asiatie et al., Characterization of submicron particles of tetragonal BaTiO3. Chem. Mater. 8(1), 226–234 (1996)

    Article  Google Scholar 

  3. Q. Feng et al., Hydrothermal soft chemical synthesis and particle morphology control of BaTiO3 in surfactant solutions. J. Am. Chem. Soc. 88(6), 1415–1420 (2005)

    Google Scholar 

  4. F. Maxim et al., Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors. Cryst. Growth Des. 8, 3309–3315 (2008)

    Article  Google Scholar 

  5. H. Zheng, Preparation and characterization of monodispersed BaTiO3nanocrystals by sol–hydrothermal method. J. Cryst. Growth 363, 300–307 (2013)

    Article  Google Scholar 

  6. X. Zhu et al., BaTiO3 Nanocrystals: Hydrothermal synthesis and structural characterization. J. Cryst. Growth 283(3–4), 553–562 (2005)

    Article  Google Scholar 

  7. S. Yoon et al., Synthesis of tetragonal barium titanate nanoparticles via alkoxide–hydroxide sol-precipitation: effect of water addition. J. Am. Ceram. Soc. 90(1), 311–314 (2007)

    Article  Google Scholar 

  8. Yang Cao et al., Hydrothermally synthesized barium titanate nanostructures from K2Ti4O9 precursors: morphology evolution and its growth mechanism. Mater. Res. Bull. 57, 162–169 (2014)

    Article  Google Scholar 

  9. F.M. Pontes et al., Theoretical and experimental study on the photoluminescence in BaTiO3 amorphous thin films prepared by the chemical route. J. Lumin. 104, 175 (2003)

    Article  Google Scholar 

  10. M.S. Zhang et al., Study of structural and photoluminescent properties in barium titanate nanocrystals synthesized by hydrothermal process. Solid State Commun. 119, 659–663 (2001)

    Article  Google Scholar 

  11. A.N. Christensen et al., Hydrothermal preparation of barium titanate by transporting reactions. Acta Chem. Scand. 24(1970), 2447 (1970)

    Article  Google Scholar 

  12. K. Kajiyoshi et al., Preparation of tetragonal barium titanate thin film on titanaium metal substrate by hydrothermal method. J. Am. Ceram. Soc. 74, 369 (1991)

    Article  Google Scholar 

  13. M.L. Moreira et al., Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chem. Mater. 20, 5381–5387 (2008)

    Article  Google Scholar 

  14. Litong Guo et al., Microwave hydrothermal synthesis of barium titanate powders. Mater. Lett. 60, 3011–3014 (2006)

    Article  Google Scholar 

  15. D. Keyson et al., Domestic microwave oven adapted for fast heat treatment of Ba0.5Sr0.5(Ti0.8Sn0.2)O3 powders. J. Mater. Process. Technol. 189, 316–319 (2007)

    Article  Google Scholar 

  16. S. Komarneni et al., Microwave–hydrothermal synthesis of ceramic powders. Mater. Res. Bull. 27, 1393–1405 (1992)

    Article  Google Scholar 

  17. S. Komarneni et al., Microwave–hydrothermal processing of titanium dioxide. Mater. Chem. Phys. 61, 50–54 (1999)

    Article  Google Scholar 

  18. B.L. Newalkar et al., Microwave–hydrothermal synthesis and characterization of barium titanate powders. Mater. Res. Bull. 36, 2347–2355 (2001)

    Article  Google Scholar 

  19. Weian Sun et al., Preparation of fine tetragonal barium titanate powder by a microwave–hydrothermal Process. J. Am. Chem. Soc. 89, 118–123 (2006)

    Google Scholar 

  20. Ying Ma et al., Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating. Chem. Mater. 9, 3023–3031 (1997)

    Article  Google Scholar 

  21. C.H. Perry et al., Temperature dependence of the Raman spectrum of BaTiO3. Phys. Rev. Lett. 15(17), 700–702 (1965)

    Article  Google Scholar 

  22. Y. Ma et al., Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating. Chem. Mater. 9(12), 3023–3031 (1997)

    Article  Google Scholar 

  23. V. Bansal et al., Temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128(36), 11958–11963 (2006)

    Article  Google Scholar 

  24. Shicheng Zhang et al., Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. Mater. Sci. Eng. B 110, 11–17 (2004)

    Article  Google Scholar 

  25. Yang Cao et al., Fabrication of BaTiO3 nanoparticles and its formation mechanism using the high temperature mixing method under hydrothermal conditions. Adv. Powder Technol. 25, 853–858 (2014)

    Article  Google Scholar 

  26. R.L. Penn et al., Epitaxial assembly in aged colloids. J. Chem. Phys. B 105(11), 2177–2182 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (NSFC Nos. 51372114, 51202118), the Doctoral Fund of the Ministry of Education of China (Grant No. 20120002120012).), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the NUAA Fundamental Research Funds (Nos. NN2012018, NP2013301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kongjun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhu, K., Wang, J. et al. Microwave-assisted sol–hydrothermal synthesis of tetragonal barium titanate nanoparticles with hollow morphologies. J Mater Sci: Mater Electron 26, 1597–1601 (2015). https://doi.org/10.1007/s10854-014-2581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2581-z

Keywords

Navigation