Skip to main content
Log in

Synthesis and characterization of WO3 polymorphs: monoclinic, orthorhombic and hexagonal structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tungsten trioxide (WO3) is a widely studied semiconductor with a band gap ranging from 2.4 to 3.2 eV with visible light harvesting below 500 nm, which is stable in aqueous solution and has good charge transport properties. An easy methodology is reported for the synthesis of phase-pure WO3 polymorphs crystallized in the orthorhombic, hexagonal and monoclinic crystal systems. The synthesis is based on the preparation of a common precursor (tungstite hydrate) from the alcoholysis of tungsten hexachloride (WCl6), and its subsequent solvothermal treatment in water/ethanol mixtures. In pure ethanol, the precursor transforms into hexagonal WO3, while at higher water content the monoclinic phase prevails. At low water content (10 vol%) the system crystallizes as pure orthorhombic WO3. In the high water content regime, the morphology of the material with the monoclinic structure can be modulated and particles elongated along the [020] direction can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Wang, T. Lindgren, J. He, A. Hagfeldt, S.E. Lindquist, J. Phys. Chem. B 104, 5686 (2000)

    Article  Google Scholar 

  2. L. Meda, G. Tozzola, A. Tacca, G. Marra, S. Caramori, V. Cristino, C.A. Bignozzi, Sol. Energy Mater. Sol. Cells 94, 788 (2010)

    Article  Google Scholar 

  3. R.S. Lillard, G.S. Kanner, D.P. Butt, J. Electrochem. Soc. 145, 2718 (1998)

    Article  Google Scholar 

  4. Q. Mi, A. Zhanaidarova, B.S. Brunschwig, H.B. Gray, N.S. Lewis, Energy Environ. Sci. 5, 5694 (2012)

    Article  Google Scholar 

  5. D. Monllor-Satoca, L. Borja, A. Rodes, R. Gomez, P. Salvador, ChemPhysChem 7, 2540 (2006)

    Article  Google Scholar 

  6. R.A. Dixon, J.J. Williams, D. Morris, J. Rebane, F.H. Jones, R.G. Egdell, S.W. Downes, Surf. Sci. 399, 199 (1998)

    Article  Google Scholar 

  7. E. Washizu, A. Yamamoto, Y. Abe, M. Kawamura, K. Sasaki, Solid State Ion. 165, 175 (2003)

    Article  Google Scholar 

  8. L. Weinhardt, M. Blum, M. Bar, C. Heske, B. Cole, B. Marsen, E.L. Miller, J. Phys. Chem. C 112, 3078 (2008)

    Article  Google Scholar 

  9. D.B. Migas, V.L. Shaposhnikov, V.N. Rodin, V.E. Borisenko, J. Appl. Phys. 108, 093713 (2010)

    Article  Google Scholar 

  10. A.D. Walkingshaw, N.A. Spaldin, E. Artacho, Phys. Rev. B 70, 165110 (2004)

    Article  Google Scholar 

  11. G.A. de Wijs, P.K. de Boer, R.A. de Groot, G. Kresse, Phys. Rev. B 59, 2684 (1999)

    Article  Google Scholar 

  12. R. Chatten, A.V. Chadwick, A. Rougier, P.J.D. Lindan, J. Phys. Chem. B 109, 3146 (2005)

    Article  Google Scholar 

  13. F. Dolci, M. Chio, M. Baricco, E. Giamello, Mater. Res. Bull. 44, 194 (2009)

    Article  Google Scholar 

  14. L. Di, L. Bo, O. Akihisa, N. Masaaki, J. Vac. Sci. Technol. B 28, C2A98–C2A103 (2010)

    Google Scholar 

  15. M.G. Hutchins, O. Abu-Alkhair, M.M. El-Nahass, K. Abd El-Hady, Mater. Chem. Phys. 98, 401 (2006)

    Article  Google Scholar 

  16. A.H. Mahan, P.A. Parilla, K.M. Jones, A.C. Dillon, Chem. Phys. Lett. 413, 88 (2005)

    Article  Google Scholar 

  17. W. Morales, M. Cason, O. Aina, N.R. de Tacconi, K. Rajeshwar, J. Am. Chem. Soc. 130, 6318 (2008)

    Article  Google Scholar 

  18. Z. Lu, S.M. Kanan, C.P. Tripp, J. Mater. Chem. 12, 983 (2002)

    Article  Google Scholar 

  19. J.M. O-Rueda de Leóna, D.R. Acosta, U. Pal, L. Castañeda, Electrochim. Acta 56(5), 2599–2605 (2011)

    Article  Google Scholar 

  20. C.A.C. Sequeira, L.F.F.T.T.G. Rodrigues, D.M.F. Santos, ECS J. Solid State Sci Technol. 1(5), R136–R139 (2012)

    Article  Google Scholar 

  21. V. Madhavi, P. Kondaiah, O. M. Hussain, S. Uthanna. Conference Papers in Energy, vol. 2013, Article ID 104047. (2013). doi:10.1155/2013/104047

  22. M. Deepa, A.K. Srivastava, R. Sharma, S.N. Govind, S.M. Shivaprasad, Appl. Surf. Sci. 254, 2342 (2008)

    Article  Google Scholar 

  23. R. Mo, G. Jin, X. Guo, Mater. Lett. 61, 3787 (2007)

    Article  Google Scholar 

  24. K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, D. He, J. Phys. D Appl. Phys. 41, 155417 (2008)

    Article  Google Scholar 

  25. S.J. Yoo, Y.H. Jung, J.W. Lim, H.G. Choi, D.K. Kim, Y.E. Sung, Sol. Energy Mater. Sol. Cells 92, 179 (2008)

    Article  Google Scholar 

  26. M. Deepa, R. Sharma, A. Basu, S.A. Agnihotry, Electrochim. Acta 50, 3545 (2005)

    Article  Google Scholar 

  27. P. Judeinstein, J. Livage, J. Mater. Chem. 1, 621 (1991)

    Article  Google Scholar 

  28. B. Munro, S. Kramer, P. Zapp, H. Krug, J. Sol-Gel Sci. Technol. 13, 673 (1998)

    Article  Google Scholar 

  29. O.J. Klejnot, Inorg. Chem. 4, 1668 (1965)

    Article  Google Scholar 

  30. G.N. Kustova, YuA Chesalov, L.M. Plysova, IYu. Molina, A.I. Nizovskii, Vib. Spectrosc. 55, 235 (2011)

    Article  Google Scholar 

  31. M. Gotić, M. Ivanda, S. Popović, S. Musić, Mater. Sci. Eng. B77, 193 (2000)

    Google Scholar 

  32. O. Yamaguchi, D. Tomihisa, H. Kawabata, K. Shimizu, J. Am. Ceram. Soc. 70, C94 (1987)

    Google Scholar 

  33. H.G. Choi, Y.H. Jung, D.K. Kim, J. Am. Ceram. Soc. 88, 1684 (2005)

    Article  Google Scholar 

  34. T. Tachikawa, S. Yamashita, T. Majima, J. Am. Chem. Soc. 133, 7197 (2011)

    Article  Google Scholar 

  35. A. Valdes, G.J. Kroes, J. Chem. Phys. 130(11), 114701 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support from FOMIX-Yucatan under Grant Number 170120, and CONACYT under Grant Numbers 193850 and 188345.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerko Oskam or Geonel Rodríguez-Gattorno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacón, C., Rodríguez-Pérez, M., Oskam, G. et al. Synthesis and characterization of WO3 polymorphs: monoclinic, orthorhombic and hexagonal structures. J Mater Sci: Mater Electron 26, 5526–5531 (2015). https://doi.org/10.1007/s10854-014-2053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2053-5

Keywords

Navigation