Skip to main content
Log in

Semiconductor to metal transition in degenerate ZnO: Al films and the impact on its carrier scattering mechanisms and bandgap for OLED applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Temperature dependent Hall measurements revealed that ionized impurity scattering was the dominant mechanism in sputter deposited, degenerate, aluminum doped zinc oxide (AZO) films up to ~530 nm thickness, and a semiconductor to metal transition was observed when thickness was further increased. With the increase in film thickness, the mobility and conductivity also increased from 6.70 to 18.7 cm2 V−1 s−1 and 1.83 × 102–8.28 × 102 (Ω cm)−1, respectively. However, this was accompanied by a larger than 0.2 eV Burstein–Moss blue-shift of the interband absorption edge determined from absorption spectra. The movement of the Fermi level further into the conduction band that accompanies the Burstein–Moss shift results in a corresponding workfunction decrease of the films. This means that the interface barrier for hole injection in anode applications such as organic light emitting diodes (OLEDs) becomes larger, which translates into higher turn-on voltages and lower current and power efficiencies compared to indium tin oxide anodes. It is suggested that improving conductivity through mobility increases, and increasing workfunction through surface functionalization may improve the prospects of AZO films in OLEDs and other applications where in addition to conductivity and transparency, workfunction is also critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.-H.K. Park, J.-I. Lee, C.-S. Hwang, H.Y. Chu, Jpn. J. Appl. Phys. 44, L242 (2005)

    Article  Google Scholar 

  2. E.W. Forsythe, Y. Gao, L.G. Provost, G.S. Tompa, J. Vac. Sci. Technol. A Vac. Surf. Films 17, 1761 (1999)

    Article  Google Scholar 

  3. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V.C.S.J. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  4. Geological Survey, Mineral Commodity Summaries: 2013, (Government Printing Office, 2013)

  5. Z.-L. Tseng, P.-C. Kao, C.-S. Yang, Y.-D. Juang, S.-Y. Chu, Appl. Surf. Sci. 261, 360 (2012)

    Article  Google Scholar 

  6. D. Huang, X. Zeng, Y. Zheng, X. Wang, Y. Yang, Front. Optoelectron. 6, 114 (2013)

    Article  Google Scholar 

  7. K.C. Park, D.Y. Ma, K.H. Kim, Thin Solid Films 305, 201 (1997)

    Article  Google Scholar 

  8. B.S. Chun, H.C. Wu, M. Abid, I.C. Chu, S. Serrano-Guisan, I.V. Shvets, D. Choi, Appl. Phys. Lett. 97, 082109 (2010)

    Article  Google Scholar 

  9. H.B. Zhou, H.Y. Zhang, M.L. Tan, W.J. Zhang, W.L. Zhang, Mater. Res. Innov. 16(6), 390 (2012)

    Article  Google Scholar 

  10. J.J. Ding, S.Y. Ma, H.X. Chen, X.F. Shi, T.T. Zhou, L.M. Mao, Phys. B Condens. Matter 404, 2439 (2009)

    Article  Google Scholar 

  11. J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, J. Appl. Phys. 100, 073714 (2006)

    Article  Google Scholar 

  12. B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, X.-Z. Zhao, J. Appl. Phys. 101, 033713 (2007)

    Article  Google Scholar 

  13. Y. Liu, J. Lian, Appl. Surf. Sci. 253, 3727 (2007)

    Article  Google Scholar 

  14. I. Volintiru, M. Creatore, B.J. Kniknie, C.I.M.A. Spee, M.C.M. Van De Sanden, J. Appl. Phys. 102, 043709 (2007)

    Article  Google Scholar 

  15. B. Joseph, P.K. Manoj, V.K. Vaidyan, Ceram. Int. 32, 487 (2006)

    Article  Google Scholar 

  16. F.-L. Kuo, Y. Li, M. Solomon, J. Du, N.D. Shepherd, J. Phys. D 45, 065301 (2012)

    Article  Google Scholar 

  17. F.L. Kuo, M.‐.T. Lin, B.A. Mensah, T.W. Scharf, N.D. Shepherd, Phys. Status Solidi A 207, 2487 (2010)

    Article  Google Scholar 

  18. M. Li, W.-H. Chen, M.-T. Lin, M.A. Omary, N.D. Shepherd, Org. Electron. 10, 863 (2009)

    Article  Google Scholar 

  19. M.-T. Lin, M. Li, W.-H. Chen, M.A. Omary, N.D. Shepherd, Solid State Electron. 56, 196 (2011)

    Article  Google Scholar 

  20. M. Li, M.-T. Lin, W.-H. Chen, R. McDougald, R. Arvapally, M. Omary, N.D. Shepherd, Phys. Status Solidi A 209, 221 (2012)

    Article  Google Scholar 

  21. M. Li, W.-H. Chen, M.-T. Lin, I. Oswald, M. Omary, N.D. Shepherd, J. Phys. D 44, 365103 (2011)

    Article  Google Scholar 

  22. Z.-L. Tseng, P.-C. Kao, Y.-C. Chen, Y.-D. Juang, Y.-M. Kuo, S.-Y. Chu, J. Electrochem. Soc. 158, J310 (2011)

    Article  Google Scholar 

  23. C. Jagdish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties (2006)

  24. S. Maniv, W.D. Westwood, E. Colombini, J. Vac. Sci. Technol. 20, 162 (1982)

    Article  Google Scholar 

  25. R.D. Shannon, Acta Crystallogr. Sect. A Crystal Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976)

    Article  Google Scholar 

  26. B.D. Cullity, BiblioBazaar (2011)

  27. D.H. Zhang, H.L. Ma, Appl. Phys. A 62, 487 (1996)

    Article  Google Scholar 

  28. S. Noguchi, H. Sakata, J. Phys. D Appl. Phys. 13, 1129 (1980)

    Article  Google Scholar 

  29. P.S. Kireev, Semicond. Phys. (Mir, Moscow) 397 (1978)

  30. J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, J. Appl. Phys. 101, 083705 (2007)

    Article  Google Scholar 

  31. K.T. Roro, G.H. Kassier, J.K. Dangbegnon, S. Sivaraya, J.E. Westraadt, J.H. Neethling, A.W.R. Leitch, J.R. Botha, Semicond. Sci. Technol. 23, 055021 (2008)

    Article  Google Scholar 

  32. T.G. Castner, N.K. Lee, G.S. Cieloszyk, G.L. Salinger, Phys. Rev. Lett. 34, 1627 (1975)

    Article  Google Scholar 

  33. S. Liang, X. Bi, J. Appl. Phys. 104, 113533 (2008)

    Article  Google Scholar 

  34. T.S. Moss, Proc. Phys. Soc. B 67, 775 (1954)

    Article  Google Scholar 

  35. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  36. J. Jia, A. Takasaki, N. Oka, Y. Shigesato, J. Appl. Phys. 112, 013718 (2012)

    Article  Google Scholar 

  37. S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999)

    Article  Google Scholar 

  38. K.E. Lee, M. Wang, E.J. Kim, S.H. Hahn, Curr. Appl. Phy. 9, 683 (2009)

    Article  Google Scholar 

  39. F. Zhu-xi, G. Chang-Xin, L. Bi-Xia, L. Gui-Hong, Chin. Phys. Lett. 15(6), 457 (1998)

    Article  Google Scholar 

  40. H.X. Chen, J.J. Ding, X.G. Zhao, S.Y. Ma, Phys. B Condens. Matter 405, 1339 (2010)

    Article  Google Scholar 

  41. K. Prabakar, C. Kim, C. Lee, Cryst. Res. Technol. 40, 1150 (2005)

    Article  Google Scholar 

  42. Q.P. Wang, D.H. Zhang, H.L. Ma, X.H. Zhang, X.J. Zhang, Appl. Surf. Sci. 220, 12 (2003)

    Article  Google Scholar 

  43. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246 (2004)

    Article  Google Scholar 

  44. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the National Science Foundation under Grant No. 1234978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel D. Shepherd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, J.K., Santos-Ortiz, R., Du, J. et al. Semiconductor to metal transition in degenerate ZnO: Al films and the impact on its carrier scattering mechanisms and bandgap for OLED applications. J Mater Sci: Mater Electron 25, 1492–1498 (2014). https://doi.org/10.1007/s10854-014-1758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1758-9

Keywords

Navigation