Skip to main content
Log in

Temperature-induced modification on the structural, optical and morphological properties of Zn0.96Cu0.04O nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn0.96Cu0.04O nanoparticles synthesized by co-precipitation method were annealed at different temperatures, 400, 500, 600 and 700 °C for 2 h in air atmosphere. Crystalline phases and optical studies of the nanoparticles were studied by X-ray diffraction (XRD) and ultraviolet (UV)–visible photo-spectrometer. Elemental composition was studied by the energy dispersive X-ray (EDX) analysis and the microstructure was examined by scanning electron microscope. The XRD showed that the prepared nanoparticles had different microstructure without changing a hexagonal wurtzite structure. The average crystallite size increased from 28 to 60 nm when the annealing temperatures increased from 400 to 700 °C. The EDX analyses confirmed the presence of Cu in ZnO system and the weight percentage was nearly equal to their nominal stoichiometry within the experimental error. The optical band gap was varied between 3.75 and 3.86 eV and found maximum, 3.86 eV at 500 °C. Existence of functional groups and bonding were analyzed by fourier transform infrared spectra. The observed blue shift in UV emission from 400 to 500 °C in photoluminescence spectra was due to the intrinsic and extrinsic impurities whereas the red shift after 500 °C was due to the increase of crystalline size and relaxation of tensile strain. The reduction in intensity of green band emission with temperature was due to the reduction of intrinsic and extrinsic defects in Zn–O–Cu lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.K. Sharma, M. Kumar, A.C. Pandey, J. Nanopart. Res. 13, 1629 (2011)

    Article  Google Scholar 

  2. V.A. Karpina, V.I. Lazorenko, C.V. Lashkarev, V.D. Dobrowolski, L.I. Kopylova, V.A. Baturin, S.A. Lytuyn, V.P. Ovsyannikov, E.A. Mauvenko, Cryst. Res. Technol. 39, 980 (2004)

    Article  Google Scholar 

  3. S.F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Mater. Sci. Eng., R 62, 1 (2008)

    Article  Google Scholar 

  4. N. Bai, T.Y. Tseng, J. Appl. Phys. 74, 695 (1993)

    Article  Google Scholar 

  5. N.K. Zayer, R. Greef, K. Roger, A.J.C. Grellier, C.N. Pannell, Thin Solid Films 352, 179 (1999)

    Article  Google Scholar 

  6. J. Xie, H. Deng, Z.Q. Xu, Y. Li, J. Huang, J. Cryst. Growth 292, 227 (2006)

    Article  Google Scholar 

  7. C. Liewhiran, S. Phanichphant, Sensors 7, 650 (2007)

    Article  Google Scholar 

  8. Zi-Ling Liu, Jian-Cheng Deng, Jing–Jing Deng, Fei–Fei Li, Mater. Sci. Eng., B 150, 99 (2008)

    Article  Google Scholar 

  9. M. Sima, I. Enculescu, M. Sima, M. Enache, E. Vasile, J.P. Ansermet, Phys. Status Solidi B 244, 1522 (2007)

    Article  Google Scholar 

  10. J.J. Ding, H.X. Chen, X.G. Zhao, S.Y. Ma, J. Phys. Chem. Solids 71, 346 (2010)

    Article  Google Scholar 

  11. Z.Q. Ma, W.G. Zhao, Y. Wang, Thin Solid Films 515, 8611 (2007)

    Article  Google Scholar 

  12. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu, J. Phys. Chem. C 112, 9579 (2008)

    Article  Google Scholar 

  13. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, Appl. Phys. Lett. 83, 3401 (2003)

    Article  Google Scholar 

  14. T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto, T. Yamamoto, Surf. Coat. Technol. 202, 973 (2007)

    Article  Google Scholar 

  15. Y.M. Tao, S.Y. Ma, H.X. Chen, J.X. Meng, L.L. Hou, Y.F. Jia, X.R. Shang, Vacuum 85, 744 (2011)

    Article  Google Scholar 

  16. Z. Banu Bahsi, A. Yavuz Oral, Opt. Mater. 29, 672 (2007)

    Article  Google Scholar 

  17. M.S. Niasari, F. Davar, A. Khansari, J. Alloys Compd. 509, 61 (2011)

    Article  Google Scholar 

  18. J. Yang, L. Fei, H. Liu, Y. Liu, M. Gao, Y. Zhang, L. Yang, J. Alloys Compd. 509, 3672 (2011)

    Article  Google Scholar 

  19. Y. Yang, H. Chen, B. Zhao, X. Bao, J. Cryst. Growth 263, 447 (2004)

    Article  Google Scholar 

  20. J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, S.T. Lee, Chem. Mater. 14, 1216 (2002)

    Article  Google Scholar 

  21. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nano Lett. 3, 235 (2003)

    Article  Google Scholar 

  22. R. Chauhan, A. Kumar, R.P. Chaudharya, J. Chem. Pharm. Res. 2, 178 (2010)

    Google Scholar 

  23. R. Savu, R. Parra, E. Joanni, B. Jancar, S.A. Elizario, R. de Camargo, P.R. Bueno, J.A. Varela, E. Longo, M.A. Zaghete, J. Cryst. Growth 311, 4102 (2009)

    Article  Google Scholar 

  24. P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 4001 (2009)

    Article  Google Scholar 

  25. A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349 (2011)

    Article  Google Scholar 

  26. D. Wang, J. Zhou, G. Liu, J. Alloys Compd. 487, 545 (2009)

    Article  Google Scholar 

  27. L.M. Huang, A.L. Rosa, R. Ahuja, Phys. Rev. B 74, 075206 (2006)

    Article  Google Scholar 

  28. Y. Wei, D. Hou, S. Qiao, C. Zhen, G. Tang, Phys. B 404, 2486 (2009)

    Article  Google Scholar 

  29. L.H. Ye, A.J. Freeman, B. Delley, Phys. Rev. B 73, 033203 (2006)

    Article  Google Scholar 

  30. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012)

    Article  Google Scholar 

  31. Hung-Ta Lin, Tsung-Shune Chin, Jhy-Chau Shih, Appl. Phys. Lett. 85, 621 (2004)

    Article  Google Scholar 

  32. H. Liu, J. Yang, Z. Hua, Y. Zhang, L. Yang, L. Xiao, Z. Xie, Appl. Surf. Sci. 256, 4162 (2010)

    Article  Google Scholar 

  33. Y.S. Sonawane, K.G. Kanade, B.B. Kale, R.C. Aiyer, Mater. Res. Bull. 43, 2719 (2008)

    Article  Google Scholar 

  34. O. Lupan, T. Pauporté, T.L. Bahers, B. Viana, I. Ciofini, Adv. Funct. Mater. 21, 3564 (2011)

    Article  Google Scholar 

  35. T.S. Herng, S.P. Lau, S.F. Yu, S.H. Tsang, K.S. Teng, J.S. Chen, J. Appl. Phys. 104, 103104 (2008)

    Article  Google Scholar 

  36. A. Askarinejad, A. Morsali, Ultrason. Sonochem. 16, 124 (2009)

    Article  Google Scholar 

  37. W.E. Mahmoud, A.A. Al-Ghamdi, S. Al-Heniti, S. Al-Ameer, J. Alloys Compd. 491, 742 (2010)

    Article  Google Scholar 

  38. S. Muthukumaran, R. Gopalakrishnan, Phys. B 407, 3448 (2012)

    Article  Google Scholar 

  39. J. Pelleg, E. Elish, J. Vac. Sci. Technol., A 20, 754 (2002)

    Article  Google Scholar 

  40. R. Gopalakrishnan, S. Muthukumaran, J. Mater. Sci.: Mater. Electron. 24, 1069 (2013)

    Google Scholar 

  41. R. Elilarassi, G. Chandrasekaran, J. Mater. Sci.: Mater. Electron. 21, 1168 (2010)

    Google Scholar 

  42. B.D. Cullity, Elements of X-ray diffractions (Addison-Wesley, Reading, MA, 1978)

    Google Scholar 

  43. G. Srinivasan, R.T.R. Kumar, J. Kumar, J. Sol–Gel Sci. Technol. 43, 171 (2007)

    Article  Google Scholar 

  44. O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B. Roldan Cuenya, H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010)

    Article  Google Scholar 

  45. X. Jian-Ping, S. Shao-Bo, L. Lan, Z. Xiao-Song, W. Ya-Xin, C. Xi-Ming, Chin. Phys. Lett. 27, 047803 (2010)

    Article  Google Scholar 

  46. S.B. Rana, P. Singh, A.K. Sharma, A.W. Carbonari, R. Dogra, J. Optoelect, Adv. Mater. 12, 257 (2010)

    Google Scholar 

  47. V. Noack, A. Eychmuller, Chem. Mater. 14, 1411 (2002)

    Article  Google Scholar 

  48. F.A. Kroger, The chemistry of imperfect crystals (North Holland, Amsterdam, 1964)

    Google Scholar 

  49. C.F. Rong, G.D. Watkins, Phys. Rev. Lett. 58, 1486 (1989)

    Article  Google Scholar 

  50. P.P. Hankare, P.A. Chate, D.J. Sathe, P.A. Chavan, V.M. Bhuse, J. Mater. Sci.: Mater. Electron. 20, 376 (2009)

    Google Scholar 

  51. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloys Compd. 448, 21 (2008)

    Article  Google Scholar 

  52. S. Muthukumaran, M. Ashok Kumar, J. Mater. Sci.: Mater. Electron. 23, 811 (2012)

    Google Scholar 

  53. Y. Wang, G. Ouyang, L.L. Wang, L.M. Tang, D.S. Tang, C.Q. Sun, Chem. Phys. Lett. 463, 383 (2008)

    Article  Google Scholar 

  54. S. Mandal, R.K. Singha, A. Dhar, S.K. Raet, Mater. Res. Bull. 43, 244 (2008)

    Article  Google Scholar 

  55. K. Laurent, D.P. Yu, S. Tusseau-Nenez, Y. Leprince-Wang, J. Phys. D Appl. Phys. 41, 195410 (2008)

    Article  Google Scholar 

  56. Y.F. Li, B. Yao, Y.M. Lu, C.X. Cong, Y.Q. Gai, C.J. Zheng, B.H. Li, Z.P. Wei, D.Z. Shen, X.W. Fan, L. Xiao, S.C. Xu, Y. Liu, Appl. Phys. Lett. 91, 021915 (2007)

    Article  Google Scholar 

  57. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Parts A and B (Wiley, New York, 1997)

    Google Scholar 

  58. S. Senthilkumar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Mater. Sci. Semi. Process. 11, 6 (2008)

    Article  Google Scholar 

  59. N. Chestony, T.D. Harris, R. Hull, L.E. Brus, J. Phys. Chem. 90, 3393 (1986)

    Article  Google Scholar 

  60. C. Karunakaran, P. Gomathisankar, G. Manikandan, Mater. Chem. Phys. 123, 585 (2010)

    Article  Google Scholar 

  61. C.K. Xu, K.K. Yang, Y.Y. Liu, L.W. Huang, H. Lee, J. Cho, H. Wang, J. Phys. Chem. C 112, 19236 (2008)

    Article  Google Scholar 

  62. T. Yamamoto, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999)

    Article  Google Scholar 

  63. R.C. Wang, H.Y. Lin, Mater. Chem. Phys. 125, 263 (2011)

    Article  Google Scholar 

  64. P.H. Kasai, Phys. Rev. 130, 989 (1963)

    Article  Google Scholar 

  65. S. Yamauchi, Y. Goto, T. Hariu, J. Cryst. Growth 260, 1 (2004)

    Article  Google Scholar 

  66. M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35 (1992)

    Article  Google Scholar 

  67. R. Dingle, Phys. Rev. Lett. 23, 579 (1969)

    Article  Google Scholar 

  68. C. Xu, T.W. Koo, B.S. Kim, J.H. Lee, S.W. Hwang, D. Whang, J. Nanosci. Nanotechnol. 11, 6062 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grant Commission, Delhi, India, for financial support under the project [File No. 41-968/2012 (SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashokkumar, M., Muthukumaran, S. Temperature-induced modification on the structural, optical and morphological properties of Zn0.96Cu0.04O nanoparticles. J Mater Sci: Mater Electron 25, 398–407 (2014). https://doi.org/10.1007/s10854-013-1600-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1600-9

Keywords

Navigation