Skip to main content
Log in

The effects of Au surface diffusion to formation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using VLS method with the separated 220 nm thick Au catalyst circles/stripes configurations sputtered onto GaAs substrate surface, this paper investigated the effects of the Au droplets/clusters formation as well as the nanowires growth process inside and outside the Au circles/stripes configurations. The Au surface outward diffusion from the Au layer edge up to several tens of micrometers has strongly dominated. The effects of Au surface diffusion to formation of Au droplets/cluster and to the nanowires growth on GaAs semiconductor substrate in the region outside the Au layers have been shown. The mechanism of the droplets/clusters formation outside the Au layer could explained by the surface cluster diffusion, meanwhile the nanowires have grown simultaneously during the Au outward diffusion. The growth could explain by the diffusion of Ga and As atoms into the diffusing Au droplets/clusters via dissociative mechanism to form nanowire seeds inside for nanowires growth. The Au droplets/clusters formation and nanowires growth on GaAs substrate outside Au layer could be applied for making nanodevices blocks outside the Au layer. Unfortunately if this Au surface diffusion phenomenon is occurring on the GaAs semiconductor containing the Au stripes interconnections in micro/nanocircuits this could also cause the short-circuits phenomenon, even at thin Au layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.J. Patently, Nano materials—the driving force. Nanotoday 7(12), 20 (2004)

    Google Scholar 

  2. C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganicnanowires. Prog. Solid State Chem. 31, 5–147 (2003). www.elsevier.nl/locate/pssc

  3. Semiconductor Nanowires: Nanoscale Electronics and Optoelectronics Part 2 (Nanotechnology). http://what-when-how.com/nanoscience-and-nanotechnology/semiconductor-nanowires-nanoscale-electronics-and-optoelectronics-part-2-nanotechnology/

  4. B. Bhushan, Handbook of Nanotechnology Part A (Springer, 2004), p. 99

  5. X. Duan, J. Wang, C.M. Lieber, Synthesis and optical properties of Galium arsenide nanowires. Appl. Phys. Lett. 76(9), 1116–1118 (2000)

    Article  CAS  Google Scholar 

  6. L. Yicheng, J. Zhong, T. Steiner (2004) Semiconductor Nanostructures for Optoelectronic Applications, S. 191–192. (Artech House, Inc., Norwood, 2004). http://de.wikipedia.org/wiki/VLS-Mechanismus (ISBN 978-1-580-53751-3)

  7. J. Kim, Nanodevices by Using Semiconductor Nanowires (University of Texas at Austin, Austin, 2004), pp. 1–11

    Google Scholar 

  8. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89 (1964). doi:10.1063/1.1753975

    Google Scholar 

  9. http://en.wikipedia.org/wiki/File:Au-Si Droplet Catalyzing Whisker Growth-droplet formation.png

  10. http://en.wikipedia.org/wiki/-Vapor-liquid-solidmethod

  11. V. Schmidt, S. Senz, U. Gösele, The shape of epitaxially grown silicon nanowires and the influence of line tension. Appl. Phys. A 80, 445–450 (2005). doi:10.1007/s00339-004-3092-1

    Article  CAS  Google Scholar 

  12. E.I. Givargizov, Fundamental aspects of VLS growth. J. Cryst. Growth. 31(1), 20–30 (1975)

    Google Scholar 

  13. T.B. Massalki, Binary Phase Diagram, vol. 1. (American Society for Metals Metal Park, Ohio, 1986)

  14. J.-H. Kang, Q. Gao, H.J. Joyce, H.H. Tan, C. Jagadish, Y. Kim, Y. Guo, H. Xu, J. Zou, M.A. Fickenscher, L.M. Smith, H.E. Jackson, J.M. Yarrison-Rice, Defect-free GaAs/AlGaAs core-shell nanowires on Si substrates. Cryst. Growth Des. 11(7), 3109–3114 (2011). doi:10.1021/cg2003657

    Google Scholar 

  15. M. Cheyssac, Sacilotti, patriarche; vapor-liquid-solid mechanisms: challenges for nanosized quantum cluster/dot/wire materials. J. Appl. Phys. 100, 044315-1 (2006). doi:10.1063/1.2236163

    Article  Google Scholar 

  16. S.A. Dayeh, E.T. Yu, D. Wang, Excess indium and substrate effects on the growth of InAs nanowires. Small 3, 1683 (2007)

    Google Scholar 

  17. S.A. Dayeh, S.T. Picraux, Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano. Lett. 10, 4032 (2010)

    Google Scholar 

  18. S.A. Dayeh, N.H. Mack, J.Y. Huang, S.T. Picraux, Advanced core/multishell germanium/silicon nanowire heterostructures: the Au diffusion bottleneck. Appl. Phys. Lett. (2011). doi:10.1063/1.3567932 (to appear)

  19. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Germanium nanowire growth below the eutectic temperature. Science 316(5825), 729–732 (2007). doi:10.1126/science.1139105

    Google Scholar 

  20. K.A. Dao, A.T. Phan, H.M. Do, T.H. Luu, M. Falke, M. MacKenzie, The influences of technological conditions and Au cluster islands on morphology of Ga2O3 nanowires grown by VLS method on GaAs substrate. J. Mater. Sci. Mater. Electron. 22(2), 204–216 (2011). doi:10.1007/s10854-010-0115-x

    Article  CAS  Google Scholar 

  21. D.K. An, N.X. Chung, P.H. Trang, H. Van Vuong, P.V. Phong, P.A. Tuan, On growth mechanisms and dynamic simulation of growth process based on the experimental results of nanowire growth by VLS method on semiconductor substrates. IOP Publishing. J. Phys. Conf. Ser. 187, 012052 (2009). doi:10.1088/1742-6596/187/1/012052

  22. D.K. An, Micro & Nanoelectronics Technology (in Vietnamese), chap 12 (Education Publication House, HaNoi, 2009), pp. 479–536 (chapter 13, pp. 537–602)

  23. http://en.wikipedia.org/wiki/Surface_diffusion

  24. E. Shustorovich, Metal-Surface Reaction Energetics: Theory and Applications to Heterogeneous Catalysis, Chemisorption, and Surface Diffusion. (VCH Publishers, Inc., London, 1991). ISBN 3-527-27938-5

  25. K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama M, Surface Science: An Introduction. (Springer, Berlin, 2003). ISBN 3-540-00545-5

  26. H.P. Ho, I. Harrison, N. Baba-Ali, B. Tuck, M. Henini, in Diffusion in GaAs and Other III-V Semiconductors, 10 years of Research, ed by D.J. Fisher. (Scitec Publications). J. Electron. Mater. 20(9), 649–652 (446-84/85-002) (1991)

    Google Scholar 

  27. Z. Liliental-Weber, J. Washburn, N. Newman, W.E. Spicer, E.R. Weber, Morphology of Au/GaAs interfaces. Appl. Phys. Lett. 49, 1514 (1986). http://dx.doi.org/10.1063/1.97318

    Google Scholar 

  28. T.G. Andersson, S.P. Svensson, The formation of the Au-GaAs (001) interface. Surf. Sci. 168(1986), 301–308 (1986)

    Google Scholar 

  29. J.B. Hannon, S. Kodambaka, F.M. Ross1, R.M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires. Letters 440, 69–71 (2006). doi:10.1038/nature04574 (Nature 440, 2 March 2006)

    Google Scholar 

  30. V.G. Weizer, N.S. Fatemi, The interaction of gold with gallium arsenide. J. Appl. Phys. 64, 4618 (1988). http://dx.doi.org/10.1063/1.341240

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the NAFOSTED for funding the basic research project (103.02-2010.40) in 2011–2012 period to carry out these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khac An Dao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dao, K.A., Dao, D.K., Nguyen, T.D. et al. The effects of Au surface diffusion to formation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method. J Mater Sci: Mater Electron 23, 2065–2074 (2012). https://doi.org/10.1007/s10854-012-0704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0704-y

Keywords

Navigation