Skip to main content
Log in

Growth of single-crystalline rutile TiO2 nanorods on fluorine-doped tin oxide glass for organic–inorganic hybrid solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-crystalline TiO2 nanorods (TiO2 NRs) are grown directly on FTO substrates by hydrothermal methods. The diameters and lengths of TiO2 NRs are easily controlled by growth conditions. When used in hybrid solar cells, TiO2 NRs function as the continuous pathway for fast electron transport to charge collecting electrode, demonstrating a high power conversion efficiency (PCE) of 3.21% with 140 nm long TiO2 NRs. The bilayer polymer coating are introduced into 500 nm long TiO2 NRs to reduce the surface roughness, resulting in the improved contact between the polymer blend and silver electrode and an enhanced PCE from 2.70 to 3.07%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.Y. Kuo, C. Gau, Appl. Phys. Lett. 95, 053302 (2009)

    Article  Google Scholar 

  2. E.D. Spoerke, M.T. Lloyd, E.M. McCready, D.C. Olson, Y.J. Lee, J.W.P. Hsu, Appl. Phys. Lett. 95, 213506 (2009)

    Article  Google Scholar 

  3. C.H. Hsieh, Y.J. Cheng, P.J. Li, C.H. Chen, M. Dubosc, R.M. Liang, C.S. Hsu, J. Am. Chem. Soc. 132, 4887 (2010)

    Article  CAS  Google Scholar 

  4. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Adv. Funct. Mater. 14, 1005 (2004)

    Article  CAS  Google Scholar 

  5. S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324 (2007)

    Article  Google Scholar 

  6. H. Hoppe, N.S. Sariciftci, J. Mater. Chem. 16, 45 (2006)

    Article  CAS  Google Scholar 

  7. Y.Y. Liang, Z. Xu, J.B. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L.P. Yu, Adv. Mater. 22, E135 (2010)

    Article  CAS  Google Scholar 

  8. P.Y. Yang, X.Y. Zhou, G.Z. Cao, C.K. Luscombe, J. Mater. Chem. 20, 2612 (2010)

    Article  CAS  Google Scholar 

  9. S. Yodyingyong, X.Y. Zhou, Q.F. Zhang, D. Triampo, J.T. Xi, K. Park, B. Limketkai, G.Z. Cao, J. Phys. Chem. C 114, 21851 (2010)

    Article  CAS  Google Scholar 

  10. G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005)

    Article  CAS  Google Scholar 

  11. W.L. Ma, C.Y. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)

    Article  CAS  Google Scholar 

  12. C.Y. Kuo, W.C. Tang, C. Gau, T.F. Guo, D.Z. Jeng, Appl. Phys. Lett. 93, 033307 (2008)

    Article  Google Scholar 

  13. Y.C. Huang, W.C. Yen, Y.C. Liao, Y.C. Yu, C.C. Hsu, M.L. Ho, P.T. Chou, W.F. Su, Appl. Phys. Lett. 96, 123501 (2010)

    Article  Google Scholar 

  14. T. Ishwara, D.D.C. Bradley, J. Nelson, P. Ravirajan, I. Vanseveren, T. Cleij, D. Vanderzande, L. Lutsen, S. Tierney, M. Heeney, I. McCulloch, Appl. Phys. Lett. 92, 053308 (2008)

    Article  Google Scholar 

  15. J.S. Huang, C.Y. Chou, C.F. Lin, Sol. Energy Mater. Sol. Cells 94, 182 (2010)

    Article  CAS  Google Scholar 

  16. S.K. Hau, H.L. Yip, A.K.Y. Jen, Polym. Rev. 50, 474 (2010)

    Article  CAS  Google Scholar 

  17. K. Takanezawa, K. Hirota, Q.S. Wei, K. Tajima, K. Hashimoto, J. Phys. Chem. C 111, 7218 (2007)

    Article  CAS  Google Scholar 

  18. Q.S. Wei, K. Hirota, K. Tajima, K. Hashimoto, Chem. Mater. 18, 5080 (2006)

    Article  CAS  Google Scholar 

  19. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  CAS  Google Scholar 

  20. A. Kumar, A.R. Madaria, C.W. Zhou, J. Phys. Chem. C 114, 7787 (2010)

    Article  CAS  Google Scholar 

  21. X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)

    Article  CAS  Google Scholar 

  22. B.Y. Yu, A. Tsai, S.P. Tsai, K.T. Wong, Y. Yang, C.W. Chu, J.J. Shyue, Nanotechnology 19, 255202 (2008)

    Article  Google Scholar 

  23. N.A. Deskins, M. Dupuis, Phys. Rev. B 75, 195212 (2007)

    Article  Google Scholar 

  24. S. Kambe, S. Nakade, Y. Wada, T. Kitamura, S. Yanagida, J. Mater. Chem. 12, 723 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JTX gratefully acknowledges the fellowship from China Scholarship Council. And this work has been supported in part by National Natural Science Foundation of China (21173042), Natural Science Foundation of Jiangsu Province (BK2011589), the US Department of Energy, Office of Basic Energy Sciences, Division of Materials and Engineering under Award No. DE-FG02-07ER46467 (Q.F.Z.) on the microstructure characterization and some power conversion efficiency measurements, National Science Foundation (DMR-1035196), Boeing-Steiner Endowment, University of Washington TGIF grant and Intel Corporation. The AFM analysis was performed at Prof. Jiangyu Li’s laboratory, Department of Mechanical Engineering, University of Washington. ZQL and OW also acknowledge the fellowship from China Scholarship Council and Thailand government, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueming Sun or Guozhong Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, J., Wiranwetchayan, O., Zhang, Q. et al. Growth of single-crystalline rutile TiO2 nanorods on fluorine-doped tin oxide glass for organic–inorganic hybrid solar cells. J Mater Sci: Mater Electron 23, 1657–1663 (2012). https://doi.org/10.1007/s10854-012-0643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0643-7

Keywords

Navigation