Skip to main content

Advertisement

Log in

Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Based on the model polyimide systems the principal nonlinear optical features, such as laser induced refractive indices changes, nonlinear refraction and third order susceptibility have been established during their doping with fullerenes, shungites, carbon nanotubes, carbon nanofibers, quantum dots, etc. The evidence of the correlation between laser induced refractive indices and charge carrier mobility has been obtained. The features of new nanocomposites for their possible optoelectronics, laser techniques and solar energy applications have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.A.G. Smith, G.R. Mitchell, S.V. O’Leary, J. Opt. A: Pure Appl. Opt. 4, 474–480 (2002)

    Google Scholar 

  2. I.C. Khoo, Y.Z. Williams, B. Lewis, T. Mallouk, Mol. Cryst. Liq. Cryst., 446, 233–244 (2006)

    Google Scholar 

  3. A.D. Grishina, L. Licea-Jimenez, L.Ya. Pereshivko, T.V. Krivenko, V.V. Savel’ev, R.W. Rychwalski, A.V. Vannikov, High Energy Chem., 40(5), 341–347 (2006)

    Google Scholar 

  4. T.V. Krivenko, L.Ya. Pereshivko, A.D. Grishina, V.V. Savel’ev, R.W. Rychwalski, A.V. Vannikov, Photoelectr High Energy Chem., 43(7), 540–542 (2009)

    Google Scholar 

  5. A. Denisov, J.-L. de Bougrenet de la Tocnaye, Appl. Opt. 48(10), 1926–1931 (2009)

  6. N.V. Kamanina, V.N. Sizov, D.I. Stasel’ko, Opt. Spectrosc., 90(1), 1–3 (2001)

    Google Scholar 

  7. R.A. Ganeev, A.I. Ryasnuansky, N.V. Kamanina, I.A. Kulagin, M.K. Kodirov, T. Usmanov, J. Opt. B: Quantum Semiclassical Opt., 3(3), 88–92 (2001)

    Google Scholar 

  8. N.V. Kamanina, Physics-Uspekhi 48(4), 419–427 (2005)

    Google Scholar 

  9. N.V. Kamanina, D.P. Uskokovic, Mater. Manufact. Process., 23, 552–556 (2008)

    Google Scholar 

  10. N.V. Kamanina, A. Emandi, F. Kajzar, A.-J. Attias, Mol. Cryst. Liq. Cryst., 486, 1 = [1043]–11 = [1053] (2008)

  11. N.V. Kamanina, A.I. Plekhanov, S.V. Serov, V.P. Savinov, P.A. Shalin, F. Kajzar, Nonlinear Opt. Quantum Opt., 40, 307–317 (2010)

    Google Scholar 

  12. N.V. Kamanina, N.A. Vasilenko, Opt. Quantum Electron., 29(1), 1–9 (1997)

    Google Scholar 

  13. N.V. Kamanina, P.Ya. Vasilyev, S.V. Serov, V.P. Savinov, K.Yu. Bogdanov, D.P. Uskokovic, Acta Phys. Polonica A 117(5), 786–790 (2010)

    Google Scholar 

  14. N.V. Kamanina, N.A.Shurpo, S.V.Likhomanova, D.N.Timonin, S.V.Serov, O.V.Barinov, P.Ya.Vasilyev, V.I.Studeonov, N.N.Rozhkova, V.E.Vaganov, I.V.Mishakov, A.A.Artukh, L.A.Chernozatonskii, Features of the nanostructured composites, in Proceedings of the tenth Israeli-Russian Bi-National Workshop 2011 “The Optimization of the Composition, Structure and Properties of Metals, Oxides, Composites, Nano- and Amorphous Materials”, Israel Academy of Science and Humanities and the Russian Academy of Science; 20 June–23 June, 2011, pp. 77–85

  15. S.a. Akhmanov, S.Yu., Nikitin: Phys. Opt. Oxford (1997)

  16. F. Gutman, L.E. Lyons, Organic Semiconductors (Wiley, New York, 1967)

  17. M.M. Mikhailova, M.M. Kosyreva, N.V. Kamanina, On the increase in the charge carrier mobility in fullerene-containing conjugated organic systems. Tech. Phys. Lett., 28(6), 450–453 (2002)

    Google Scholar 

  18. B. Sahraoui, I.V. Kityk, X. Nguyen Phu, P. Hudhomme, A. Gorgues, Phys. Rev. B.V, 59B:9229–9239 (1999)

    Google Scholar 

  19. I. Fuks-Janczarek, R. Miedzinski, E. Gondek, P. Szlachcic, I.V. Kityk. J. Mater. Sci. Mater. Electron., 19, 434–441 (2008)

    Google Scholar 

  20. M. Czerwinski, J. Bieleninik, J. Napieralski, I.V. Kityk, J. Kasperczyk, R.I. Mervinskii, Eur. Polymer J., 33(9), 1441–1447 (1997)

    Google Scholar 

Download references

Acknowledgments

We would like to thanks our colleagues Dr. V.E.Vaganov (Vladimir State University, VlSU, Vladimir, Russia), Dr.I.V.Mishakov (Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia), Dr.V.I.Studeonov and P.Ya.Vasilyev (Vavilov State Optical Institute, Saint-Petersburg, Russia) for their help and discussion. The results have been supported by RFBR grant #10-03-00916 and by Russian Federal Program, Project “Modulator with SEW” (2011). Partially the results have been shown at the YUCOMAT-2011 conference, Herceg-Novi, Montenegro, 2011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Kamanina or I. V. Kityk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamanina, N.V., Serov, S.V., Shurpo, N.A. et al. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J Mater Sci: Mater Electron 23, 1538–1542 (2012). https://doi.org/10.1007/s10854-012-0625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0625-9

Keywords

Navigation