Skip to main content
Log in

The AC impedance and variable temperature dielectric spectroscopic analysis of MnO2 doped and un-doped ZnO–V2O5 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical and dielectric properties of MnO2 doped and un-doped ZnO–V2O5 ceramics were studied by ac impedance and variable temperature dielectric spectroscopy. The results show that V and Mn ions simultaneously segregated at the grain boundaries to form an intergranular phase, increasing the resistivity of the intervening layer and the Schottky barrier at the grain boundaries, and then improving the varistor performance. An obvious loss peak appeared in all the samples, which means an effective depletion layer has formed. As for the samples sintered at 1,000 °C for 2 h, the activation energy of the characteristic relaxation process is about 0.339 eV for 99.5 mol% ZnO + 0.5 mol% V2O5 and 0.352 eV for 99.0 mol% ZnO + 0.5 mol% V2O5 + 0.5 mol% MnO2, respectively, which means this relaxation process is associated with oxygen vacancy \( {\text{V}_{\text{O}}}^{ \cdot } \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.R. Clarke, Varistor ceramics. J. Am. Ceram. Soc. 82, 485–502 (1999)

    Article  CAS  Google Scholar 

  2. J.K. Tsai, T.B. Wu, Non-ohmic characteristics of ZnO–V2O5 ceramics. J. Appl. Phys. 76, 4817–4822 (1994)

    Article  CAS  Google Scholar 

  3. J.K. Tsai, T.B. Wu, Microstructure and nonohmic properties of binary ZnO–V2O5 ceramics sintered at 900 °C. Mater. Lett. 26, 199–203 (1996)

    Article  CAS  Google Scholar 

  4. J. Wu, C.S. Xie, J.H. Hu, D.W. Zeng, A.H. Wang, Microstructure and electrical characteristics of ZnO–B2O3–PbO–V2O5–MnO2 ceramics prepared from ZnO nanopowders. J. Eur. Ceram. Soc. 24, 3635–3641 (2004)

    Article  CAS  Google Scholar 

  5. H.H. Hng, P.L. Chan, Cr2O3 doping in ZnO – 0.5 mol% V2O5 varistor ceramics. Ceram. Int. 35, 409–413 (2009)

    Article  CAS  Google Scholar 

  6. C.W. Nahm, Improvement of electrical properties of V2O5 modified ZnO ceramics by Mn-doping for varistor applications. J. Mater. Sci. Mater. Electron. 19, 1023–1029 (2008)

    Article  CAS  Google Scholar 

  7. C.W. Nahm, Effect of sintering temperature on varistor properties and aging characteristics of ZnO–V2O5–MnO2 ceramics. Ceram. Int. 35, 2679–2685 (2009)

    Article  CAS  Google Scholar 

  8. H.H. Hng, P.L. Chan, Effects of MnO2 doping in V2O5-doped ZnO varistor system. Mater. Chem. Phys. 75, 61–66 (2002)

    Article  CAS  Google Scholar 

  9. H.H. Hng, K.M. Knowles, Microstructure and current-voltage characteristics of multi-component vanadium-doped zinc oxide varistors. J. Am. Ceram. Soc. 83, 2455–2462 (2000)

    Article  CAS  Google Scholar 

  10. H. Pfeiffer, K.M. Knowles, Effects of vanadium and manganese concentrations on the composition, structure and electrical properties of ZnO–rich MnO2–V2O5–ZnO varistors. J. Eur. Ceram. Soc. 24, 1199–1203 (2004)

    Article  CAS  Google Scholar 

  11. C.W. Nahm, Influence of Mn doping on microstructure and DC-accelerated aging behaviors of ZnO-V2O5-based varistors. Mater. Sci. Eng. B 150, 32–37 (2008)

    Article  CAS  Google Scholar 

  12. C.W. Nahm, Effect of MnO2 addition on microstructure and electrical properties of ZnO-V2O5-based varistor ceramics. Ceram. Int. 35, 541–546 (2009)

    Article  CAS  Google Scholar 

  13. C.W. Nahm, Effect of dopant (Al, Nb, Bi, La) on varistor properties of ZnO–V2O5–MnO2–Co3O4–Dy2O3 ceramics. Ceram. Int. 36, 1109–1115 (2010)

    Article  CAS  Google Scholar 

  14. C.W. Nahm, Microstructure and electrical properties of ZnO–V2O5–MnO2–Co3O4–Dy2O3–Nb2O5-based varistors. J. Alloys. Compd. 490, L52–L54 (2010)

    Article  CAS  Google Scholar 

  15. C.T. Kuo, C.S. Chen, I.N. Lin, Microstructure and nonlinear properties of microwave-sintered ZnO–V2O5 varistors: II, effect of Mn3O4 doping. J. Am. Ceram. Soc. 81, 2949–2956 (1998)

    Article  CAS  Google Scholar 

  16. H.H. Hng, K.M. Knowles, Characterisation of Zn3(VO4)2 phases in V2O5-doped ZnO varistors. J. Eur. Ceram. Soc. 19, 721–726 (1999)

    Article  CAS  Google Scholar 

  17. W.G. Carlson, T.K. Gupta, Improved varistor nonlinearity via donor impurity doping. J. Appl. Phys. 53, 5746–5753 (1982)

    Article  CAS  Google Scholar 

  18. K.A. Abdullah, A. Bui, A. Loubiere, Low frequency and low temperature behavior of ZnO-based varistor by ac impedance measurements. J. Appl. Phys. 69, 4046–4052 (1991)

    Article  Google Scholar 

  19. J.N. Cai, Y.H. Lin, M. Li, C.W. Nan, Sintering temperature dependence of grain boundary resistivity in a rare earth-doped ZnO varistor. J. Am. Ceram. Soc. 90, 291–294 (2007)

    Article  CAS  Google Scholar 

  20. L.M. Levinson, H.R. Philipp, High-frequency and high-current studies of metal oxide varistors. J. Appl. Phys. 479, 3116–3121 (1976)

    Article  Google Scholar 

  21. C. Tsonos, A. Kanapitsas, D. Triantis, C. Anastasiadis, I. Stavrakas, P. Pissis, Low temperature dielectric relaxations in ZnO varistor. Jpn. J. App. Phys. 49, 051102 (2010)

    Google Scholar 

  22. S.T. Li, P.F. Cheng, L. Zhao, J.Y. Li, Study of intrinsic defect s in ZnO varistor ceramics by dielectric spectroscopy. Acta Phys. Sin-Ch ED 58, 523–528 (2009)

    CAS  Google Scholar 

  23. P.F. Cheng, S.T. Li, J.Y. Li, Dielectric loss of ZnO varistor ceramics by variable temperature spectroscopy. Acta Phys. Sin-Ch ED 58(8), 5721–5725 (2009)

    Google Scholar 

  24. T.K. Gupta, Application of Zinc Oxide varistors. J. Am. Cerum. Soc. 73, 1817–1840 (1990)

    Article  CAS  Google Scholar 

  25. J.P. Han, A.M.R. Senos, P.Q. Mantas, Deep donors in polycrystalline Mn-doped ZnO. Mater. Chem. Phys. 75, 117–120 (2002)

    Article  CAS  Google Scholar 

  26. M. Kurzawa, I. Rychlowska-Himmel, M. Bosacka, A. Blonska-Tabero, Reinvestigation of phase equilibria in the V2O5–ZnO system. J. Therm. Anal. Calorim. 64(3), 1113–1119 (2001)

    Google Scholar 

  27. J.F. Wang, Y.J. Wang, W.B. Su, H.C. Chen, W.X. Wang, Novel (Zn, Nb)-doped SnO2 varistors. Mater. Sci. Eng. B 96, 8–13 (2002)

    Article  Google Scholar 

  28. G. Branković, Z. Branković, V.D. Jović, J.A. Varela, Fractal approach to ac impedance spectroscopy studies of ceramic materials. J. Electroceram. 7, 89–94 (2001)

    Google Scholar 

  29. M.H. Abdullah, A.N. Yusoff, Complex impedance and dielectric properties of an Mg–Zn ferrite. J. Alloys. Compd. 233, 129–135 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the national nature science foundation of China (Grant No. 50902105). The authors sincerely thank Prof. L. Zhao for the help with the ac impedance test and Prof. S.L. Liu for the help in our English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Qi, T., Li, T.T. et al. The AC impedance and variable temperature dielectric spectroscopic analysis of MnO2 doped and un-doped ZnO–V2O5 ceramics. J Mater Sci: Mater Electron 23, 1143–1150 (2012). https://doi.org/10.1007/s10854-011-0562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0562-z

Keywords

Navigation