Skip to main content
Log in

Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Epoxy thin film composites filled with particulate nanofillers; synthetic diamond and graphene nanoplatelets were prepared and characterized based on tensile, thermal, and electrical properties. The influences of these two types of fillers, especially in terms of their loading, sizes and shapes, were discussed. It was found that the epoxy thin film composites incorporating synthetic diamond displayed optimum properties where the addition of synthetic diamond from 0 to 2 vol.% results in higher elastic modulus, tensile strength, elongation at break, thermal conductivity and storage modulus if compared to those of graphene nanoplatelets composites. Both thin film composites showed improvement in the glass transition temperature with increasing filler loadings. Results on the electrical conductivity of both systems showed that higher conductivity is observed in graphene nanoplatelets composites if compared to synthetic diamond composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.K. Fink, A concise introduction to additives for thermoplastic polymers (Wiley & Sons Ltd, Massachusetts, 2010), pp. 25–34

    Google Scholar 

  2. H. Fukushima, L.T. Drzal, B.P. Rook, M.J. Rich, Thermal conductivity of exfoliated graphite nanocomposites. J. Therm. Anal. Calorim. 85, 235–238 (2006)

    Article  CAS  Google Scholar 

  3. R.K. Gupta, E. Kennel, K.J. Kim, Polymer nanocomposites handbook (CRC Press, Boca Raton, 2010), pp. 255–279

    Google Scholar 

  4. X. Yu, R. Rajamani, K.A. Stelson, T. Cui, Fabrication of carbon nanotube based transparent conductive thin films using layer-by-layer. Surf. Coat. Technol. 202(10), 2002–2007 (2008)

    Article  CAS  Google Scholar 

  5. F. Du, C. Guthy, T. Kashiwagi, J.E. Fischer, K.I. Winey, An infiltration method for preparing single wall nanotube/epoxy composite with improved thermal conductivity. Polym. Sci. Phys. 44, 1513–1534 (2006)

    Article  CAS  Google Scholar 

  6. L. Fan, B. Su, J. Qu, C.P. Wong, electrical and thermal conductivities of polymer composites containing nano-sized particles, IEEE Electronic Components and Technology Conference. (IEEE Pub, New Jershey 2004), pp. 148–154

  7. D. Ratna, Epoxy composites: impact resistance and flame retardancy. Rapra. Rev. Rep. 16(5), 1–6 (2005)

    Google Scholar 

  8. L. Na Saw, Fabrication and properties of transparent, conductive and flexible MWCNTs/Epoxy composite film, (MSc Thesis, Universiti Sains Malaysia, Penang, 2011), pp. 46–58

  9. Q. Wang, H.S. Xia, C.H. Zhang, Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation. J. Appl. Polym. Sci. 80(7–10), 1478–1488 (2000)

    Google Scholar 

  10. A. Yasmin, I.M. Daniel, Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45, 8211–8219 (2004)

    Article  CAS  Google Scholar 

  11. D.H. Cho, S.Y. Lee, G.M. Yang, H. Fukushima, L.T. Drazal, Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol. Mater. Eng. 290, 179–187 (2005)

    Article  CAS  Google Scholar 

  12. G. Wypych, Handbook of fillers, 2nd edn. (ChemTec Publishing, New York, 2000), pp. 190–199

    Google Scholar 

  13. S.S. Young, R.Y. Jae, Influence of dispersion states of carbon nanotube on physical properties of epoxy nanocomposites. Carbon 43, 1378–1385 (2005)

    Article  Google Scholar 

  14. S.G. Miller, J.L. Bauer, M.J. Maryanski, P.J. Heimann, J.P. Barlow, J.M. Gosau, R.E. Allred, Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Comp. Sci. Tech. 70, 1120–1125 (2010)

    Article  CAS  Google Scholar 

  15. A.F. Othman, M. Mariatti, Properties of aluminum filled polypropylene composites. Polym. Polym. Compos. 14(6), 623–633 (2006)

    Google Scholar 

  16. O. Shenderova, T. Tyler, G. Cunningham, M. Ray, J. Walsh, M. Casulli, S. Hens, G. McGuire, V. Kuznetsov, S. Lipa, Nanodiamond and onion-like carbon polymer nanocomposites. Diam. Relat. Mater. 16, 1213–1217 (2007)

    Article  CAS  Google Scholar 

  17. R. Kochetov, T. Andritsch, U. Lafont, P.H.F. Mprshuis, J.J. Smit, Thermal conductivity of nano-filled epoxy system (IEEE Explore Pub, Netherlands, 2009), pp. 111–135

    Google Scholar 

  18. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W.A. Bauhofer, H. Windle, K. Schulte, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 2036–2045 (2006)

    Article  CAS  Google Scholar 

  19. Y.M. Chen, J.M. Ting, Ultra high thermal conductivity polymer composites. Carbon 40, 359–362 (2002)

    Article  CAS  Google Scholar 

  20. J. Scheirs, Compositional and failure analysis of polymers (John Wiley & Sons Ltd, New York, 2000), pp. 169–188

    Google Scholar 

  21. T. Nazir, A. Afzal, H.M. Siddiqi, Z. Ahmad, M. Dumon, Thermally and mechanically superior hybrid epoxy-silica polymer films via sol-gel method. Prog. Organ. Coat. 69, 100–106 (2010)

    Article  CAS  Google Scholar 

  22. W. Jia, R. Tchoudakoz, M. Narkis, Performance of expanded graphite and expanded milled-grapheite fillers in thermosetting resins. Polym. Compos. 20, 526–533 (2005)

    Article  Google Scholar 

  23. G.W. Lee, M. Park, J.K. Kim, J.I. Lee, H.G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. Part A 37, 727–734 (2006)

    Article  Google Scholar 

  24. M.O. Seydibeyiglu, F.S. Guner, I. Ece, N. Gungor, Nanopolymers, the 1st international conference (Rapra Technology Ltd, Berlin, 2007), pp. 79–80

    Google Scholar 

  25. L. Williams, W. Adams, Nanotechnology demystified (The McGraw-Hill Companies, New York, 2007), pp. 15–16

    Google Scholar 

  26. S. Ganguli, A.K. Roy, D.P. Anderson, Improved thermal conductivity for chemical functionalized exfoliated graphite/epoxy composites. Carbon 46, 806–817 (2008)

    Article  CAS  Google Scholar 

  27. H. Wang, W. Porter, Thermal conductivity, proceedings of the twenty-seventh international thermal conductivity conference (DEStech Publications Inc, USA, 2005), pp. 270–275

    Google Scholar 

  28. T. Tyler, O. Shenderova, G. Cunningham, J. Walsh, J. Drobnik, G. McGuire, Thermal transport properties of diamond based nanofluids and nanocomposites. Diam. Relat. Mater. 15, 2078–2081 (2006)

    Article  CAS  Google Scholar 

  29. Y.S. Song, J.R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43, 1378–1385 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Research University Grant (814055) from the Universiti Sains Malaysia and the Ministry of Science, Technology, and Innovation (MOSTI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serena Saw, W.P., Mariatti, M. Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications. J Mater Sci: Mater Electron 23, 817–824 (2012). https://doi.org/10.1007/s10854-011-0499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0499-2

Keywords

Navigation