Skip to main content
Log in

Magnetic and dielectric properties of the M-type barium strontium hexaferrite (Ba x Sr1−x Fe12O19) in the RF and microwave (MW) frequency range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents results for the dielectric permittivity (ε′), dielectric loss (tg δ E) dielectric permeability (μ′) and magnetic loss (tg δ M) in the radio-frequency and microwave frequency range of Ba x Sr1−x Fe12O19 hexaferrite (0 ≤ x ≤ 1). The samples were prepared by a new route of the ceramic method. The magnetic permeability (μ′) and magnetic loss (tg δ M) measurements in the range 100 MHz to 1.5 GHz, reveals that 1.32 ≤ μ′ ≤ 1.68 for the permeability of BFO100 (BaFe12O19) and 1.16 < μ′ ≤ 1.88 for SFO100 (SrFe12O19) in the range of studied frequencies. The BFO100 sample presented lower loss (tg δ M = 4.10−3 at 1.5 GHz). The permittivity of BFO100 and SFO100 in 1.5 GHz are, respectively 8.18 and 8.19, and in the 1 MHz are, respectively 52.04 and 19.09. The samples presented coercive field in the range of 3–5 kOe and remanence magnetization in the range of 33–36 emu/g. The subjects of paper were study the dielectric and magnetic properties of the barium and strontium hexaferrite, in view of applications as a material for permanent magnets, high density magnetic recording and microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Li, G.G. Hu, H.D. Zhou, X.J. Fan, X.G. Li, Attractive microwave-absorbing properties of La1−x Sr x MnO3 manganite powders. Mater. Chem. Phys. 75(1–3), 101–104 (2002)

    Article  CAS  Google Scholar 

  2. K. Miura, M. Masuda, M. Itoh, T. Horikawa, K. Machida, Microwave absorption properties of the nano-composite powders recovered from Nd–Fe–B bonded magnet scraps. J. Alloys Comp. 408–412, 1391–1395 (2006)

    Article  Google Scholar 

  3. K. O’Grady, H. Laidler, The limits to magnetic recording—media considerations. J. Magn. Magn. Mater. 200(1–3), 616–633 (1999)

    Article  CAS  Google Scholar 

  4. R.C. Buchanan, Ceramic Materials for Electronics, 2nd edn. (Marcel Dekker Inc., New York, 1991), pp. 207–210

    Google Scholar 

  5. V. Babu, P. Padaikathan, Structure and hard magnetic properties of barium hexaferrite with and without La2O3 prepared by ball milling. J. Magn. Magn. Mater. 241(1), 85–88 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Y. Bai, J. Zhou, Z. Gui, Z. Yue, L. Li, Preparation and magnetic characterization of Y-type hexaferrites containing zinc, cobalt and copper. Mater. Sci. Eng. B 99(1–3), 266–269 (2003)

    Article  Google Scholar 

  7. V.K. Sankaranarayanan, R.P. Pant, A.C. Rastogi, Spray pyrolytic deposition of barium hexaferrite thin films for magnetic recording applications. J. Magn. Magn. Mater. 220(1), 72–78 (2000)

    Article  ADS  CAS  Google Scholar 

  8. C.Y. Tsay, K.S. Liu, T.F. Lin, I.N. Lin, Microwave sintering of NiCuZn ferrites and multilayer chip inductors. J. Magn. Magn. Mater. 209(1–3), 189–192 (2000)

    Article  ADS  CAS  Google Scholar 

  9. A. Gonchar, S. Gorelik, S. Katynkina, L. Letyuk, I. Ryabov, The regularity of microstructure formation and its influence on the properties of soft magnetic ferrites. J. Magn. Magn. Mater. 215–216, 221–223 (2000)

    Article  Google Scholar 

  10. J. Huang, H. Zhuang, W. Li, Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion. Mater. Res. Bull. 38(1), 149–159 (2003)

    Article  CAS  Google Scholar 

  11. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990), pp. 305–309

    Google Scholar 

  12. H. Cho, S. Kim, M-hexaferrites with planar magnetic anisotropy and their application to high-frequency microwave absorbers. IEEE Trans. Magn. 35(5), 3151–3153 (1999)

    Article  CAS  Google Scholar 

  13. I. Nedkov, A. Petkov, A. Karpov, Microwave absorption in Sc- and CoTi-substituted Ba hexaferritepowders. IEEE Trans. Magn. 26(5), 1483–1484 (1990)

    Article  ADS  CAS  Google Scholar 

  14. M.R. Meshram, N.K. Agrawal, B. Shina, P.S. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorb. J. Magn. Magn. Mater. 271(2–3), 207–214 (2004)

    Article  ADS  CAS  Google Scholar 

  15. S. Sugimoto, K. Haga, T. Kagotani, K. Inomata, Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method. J. Magn. Magn. Mater. 290–291(2), 1188–1191 (2005)

    Article  Google Scholar 

  16. J. Qui, M. Gu, H. Shen, Microwave absorption properties of Al- and Cr-substituted M-type barium hexaferrite. J. Magn. Magn. Mater. 295(3), 263–268 (2005)

    Article  ADS  Google Scholar 

  17. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967)

    Article  CAS  Google Scholar 

  18. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–67 (1969)

    Article  CAS  Google Scholar 

  19. R.A. Young, The Rietveld Method (Oxford University Press/IUCr, Oxford, 1996), pp. 1–38

    Google Scholar 

  20. R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva-Santos, DBWS-9411—an upgrade of the DBW* programs for Rietveld refinement with PC and mainframe computers. J. Appl. Crystallogr. 28, 366–367 (1995)

    Article  Google Scholar 

  21. F.M.M. Pereira, C.A.R. Junior, M.R.P. Santos, R.S.T.M. Sohn, F.N.A. Freire, J.M. Sasaki, J.A.C. de Paiva, A.S.B. Sombra, Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (Ba x sr1−x Fe12o19). J. Mater. Sci. Mater. Electron. 19(7), 627–638 (2008)

    Google Scholar 

  22. Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 84-0757)

  23. Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 33-1340)

  24. Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 72-0469)

  25. R. Martinez-Garcia, E. Reguera Ruiz, E. Estevez Rams, Structural characterization of low temperature synthesized SrFe 12O19. Mater. Lett. 50, 183–187 (2001)

    Article  CAS  Google Scholar 

  26. M. Sivakumar, A. Gedanken, W. Zhong, Y.W. Du, D. Bhattacharya, Y. Yeshurun, I. Felner, Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5. J. Magn. Magn. Mater. 286, 95–104 (2004)

    Article  ADS  Google Scholar 

  27. J. Durbin, G.S. Watson, Testing for serial correlation in least squares regression I. Biometrika 37, 409–428 (1950)

    PubMed  CAS  MathSciNet  MATH  Google Scholar 

  28. J. Durbin, G.S. Watson, Testing for serial correlation in least squares regression II. Biometrika 38, 159–178 (1951)

    PubMed  CAS  MathSciNet  MATH  Google Scholar 

  29. J. Durbin, G.S. Watson, Testing for serial correlation in least squares regression III. Biometrika 58, 1–19 (1971)

    MathSciNet  MATH  Google Scholar 

  30. R.J. Hill, H.D. Flack, The use of the Durbin–Watson d statistic in Rietveld analysis. J. Appl. Crystallogr. 20, 356–361 (1987)

    Article  CAS  Google Scholar 

  31. H. Ismael, M.K. El Nimr, A.M. Abou El Ata, M.A. El Hiti, M.A. Ahmed, A.A. Murakhowskii, Dielectric behavior of hexaferrites BaCo2−x Zn x Fe16027. J. Magn. Magn. Mater. 150, 403–408 (1995)

    Article  ADS  CAS  Google Scholar 

  32. Z. Haijun, L. Zhichao, M. Chenliang, Y. Xi, Z. Liangying, W. Mingzhong, Preparation and microwave properties of Co- and Ti-doped barium ferrite by citrate sol–gel process. Mater. Chem. Phys. 80, 129–134 (2003)

    Article  Google Scholar 

  33. Z. Haijun, L. Zhichao, M. Chenliang, Y. Xi, Z. Liangying, W. Mingzhong, Complex permittivity, permeability, and microwave absorption of Zn- and Ti- substituted barium ferrite by citrate sol–gel process. Mater. Sci. Eng. B 96, 289–295 (2002)

    Article  Google Scholar 

  34. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, New York, 1973), p. 828

    Google Scholar 

  35. K.W. Wagner, Ann. Phys. 40, 817 (1973)

    Google Scholar 

  36. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)

    Article  ADS  CAS  Google Scholar 

  37. S.E. Jacobo, W.G. Fano, A.C. Razzite, N.D. Digiovanni, V. Trainotti, Dielectric properties of barium hexaferrite in the microwave range. in Conference on Electrical Insulation and Dielectric Phenomena, Annual Report. Publication Date: 25–28 October, vol. 1, pp. 273–276 (1998)

  38. P.V. Reddy, T.S. Rao, Dielectric behaviour of mixed Li–Ni ferrites at low frequencies. J. Less. Common Metals 86, 255–261 (1982)

    Article  CAS  Google Scholar 

  39. J. Smit, H.P.J. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959), pp. 78–84

    Google Scholar 

  40. B.K. Kunar, G.P. Srivastava, Dispersion observed in electrical properties of titanium-substituted lithium ferrites. J. Appl. Phys. 75(10), 6115–6117 (1994)

    Article  Google Scholar 

  41. M.A. El Hiti, Dielectric behaviour in Mg–Zn ferrites. J. Magn. Magn. Mater. 192, 305–313 (1999)

    Article  Google Scholar 

  42. Q. Feng, L. Jen, Microwave properties of ZnTi-substituted M-type barium hexaferrites. IEEE Trans. Magn. 38(2), 1391–1394 (2002)

    Article  ADS  CAS  Google Scholar 

  43. A. Bahadoor, Y.M.N. Afsar, Complex permittivity and permeability of barium and strontium ferrite powders in X, KU, and K-band frequency ranges. J. Appl. Phys. 97, 10F105–10F105-3 (2005)

    Article  Google Scholar 

  44. J. Ding, R. Street, H. Nishio, Magnetic properties of Ba- and Sr-hexaferrite prepared by mechanical alloying. J. Magn. Magn. Mater. 164(30), 385–389 (1996)

    Article  ADS  CAS  Google Scholar 

  45. J. Ding, D. Maurice, W.F. Miao, P.G. McCormick, R. Street, Hexaferrite magnetic materials prepared by mechanical alloying. J. Magn. Magn. Mater. 150(3), 417–420 (1995)

    Article  ADS  CAS  Google Scholar 

  46. J. Ding, H. Yang, W.F. Miao, P.G. McCormick, R. Street, High coercivity Ba hexaferrite prepared by mechanical alloying. J. Alloys Comp. 221, 70–73 (1995)

    Article  CAS  Google Scholar 

  47. J. Ding, T. Tsuzuki, P.G. McCormick, Structural evolution of Fe+ Fe2O3 during mechanical milling. J. Magn. Magn. Mater. 177–181(2), 931–934 (1998)

    Article  Google Scholar 

  48. S. Wang, J. Ding, Y. Shi, Y.J. Chen, High coercivity in mechanically alloyed BaFe10Al2O19. J. Magn. Magn. Mater. 219, 206–212 (2000)

    Article  ADS  CAS  Google Scholar 

  49. W.D. Callister, Jr., Materials Science and Engineering an Introduction, 4th edn. (John Wiley and Sons, New York, 1997), pp. 660–686

  50. F. Carmona, A. Martin, C. Alemany, Magnetic viscosity in Ba-ferrite. J. Magn. Magn. Mater. 92(3), 417–423 (1991)

    Article  ADS  CAS  Google Scholar 

  51. H. Staeblein, Hard ferrites and plastoferrites, in Ferromagnetic Materials, vol. 3, ed. by E.P. Wohlfarth (North-Holland Publ. Co, Amsterdam, 1982), p. 441

    Google Scholar 

Download references

Acknowledgments

This work partly sponsored by CAPES, CNPq and FUNCAP (Brazilian agencies), and the U.S. Air Force Office of Scientific Research (AFOSR) (FA9550-06-1-0543). We want to thank Prof. R. Valenzuela, Instituto de Investigaciones en Materiales (IIM-UNAM) for the hysteresis measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. B. Sombra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, F.M.M., Santos, M.R.P., Sohn, R.S.T.M. et al. Magnetic and dielectric properties of the M-type barium strontium hexaferrite (Ba x Sr1−x Fe12O19) in the RF and microwave (MW) frequency range. J Mater Sci: Mater Electron 20, 408–417 (2009). https://doi.org/10.1007/s10854-008-9744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9744-8

Keywords

Navigation