Skip to main content
Log in

Defect-engineered WO3−x nanosheets for optimized photocatalytic nitrogen fixation and hydrogen production

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing artificial N2 fixation and hydrogen production using mild, green, clean, and reliable sunlight is of great significance. In this study, the photocatalytic nitrogen fixation and hydrogen production performances of WO3−x were improved by oxygen vacancies engineering. WO3−x nanosheets with oxygen-rich defects were readily synthesized by hydrogen reduction treatment. WO3−x exhibits a two-dimensional nanosheets structure, and the introduction of oxygen defects affects its energy band structure. The slight narrowing of the band gap and the increase of the conduction band facilitate the transfer of photogenerated charges and increase the reducibility of WO3−x. Electron paramagnetic resonance (EPR) and N2-temperature programmed desorption (N2-TPD) prove that oxygen vacancies can regulate the adsorption and activation of N2 molecules. W500 specimen has a photocatalytic nitrogen fixation activity of 28.4 μmol g−1 h−1 and a hydrogen production activity of 60.4 μmol g−1 h−1 under the full spectrum. It is hoped that oxygen vacancies engineering can provide some inspiration for the rational design and optimization of efficient photocatalytic fixation of N2 and hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and supplementary materials.

References

  1. Wang S, Ichihara F, Pang H et al (2018) Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv Funct Mater 28:1803309. https://doi.org/10.1002/adfm.201803309

    Article  CAS  Google Scholar 

  2. Suryanto BHR, Du H-L, Wang D et al (2019) Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal 2:290–296. https://doi.org/10.1038/s41929-019-0252-4

    Article  CAS  Google Scholar 

  3. Shi R, Zhang X, Waterhouse GIN et al (2020) The journey toward low temperature, low pressure catalytic nitrogen fixation. Adv Energy Mater 10:2000659. https://doi.org/10.1002/aenm.202000659

    Article  CAS  Google Scholar 

  4. Chen X, Li N, Kong Z et al (2018) Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Mater Horiz 5:9–27. https://doi.org/10.1039/c7mh00557a

    Article  CAS  Google Scholar 

  5. Lazouski N, Chung M, Williams K et al (2020) Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat Catal 3:463–469. https://doi.org/10.1038/s41929-020-0455-8

    Article  CAS  Google Scholar 

  6. Hattori M, Iijima S, Nakao T et al (2020) Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nat Commun 11:2001. https://doi.org/10.1038/s41467-020-15868-8

    Article  CAS  Google Scholar 

  7. Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T (2017) Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J Am Chem Soc 139:10929–10936. https://doi.org/10.1021/jacs.7b06634

    Article  CAS  Google Scholar 

  8. Cheng M, Xiao C, Xie Y (2019) Photocatalytic nitrogen fixation: the role of defects in photocatalysts. J Mater Chem A 7:19616–19633. https://doi.org/10.1039/c9ta06435d

    Article  CAS  Google Scholar 

  9. Zhao Y, Miao Y, Zhou C, Zhang T (2022) Artificial photocatalytic nitrogen fixation: Where are we now? Where is its future? Mol Catal 518:112107. https://doi.org/10.1016/j.mcat.2021.112107

    Article  CAS  Google Scholar 

  10. Schrauzer GN, Guth TD (1977) Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc 99:7189–7193. https://doi.org/10.1021/ja00464a015

    Article  CAS  Google Scholar 

  11. Li Y, Wang B, Xiang Q-J et al (2022) Alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation. Dalton Trans 51:16527–16535. https://doi.org/10.1039/d2dt02731c

    Article  CAS  Google Scholar 

  12. Zhang L, Hou S, Wang T et al (2022) Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small 18:2202252. https://doi.org/10.1002/smll.202202252

    Article  CAS  Google Scholar 

  13. Sun B, Liang Z, Qian Y et al (2020) Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS. ACS Appl Mater Interfaces 12:7257–7269. https://doi.org/10.1021/acsami.9b20767

    Article  CAS  Google Scholar 

  14. Chen S, Zhao X, Xie F et al (2020) Efficient charge separation between ZnIn2S4 nanoparticles and polyaniline nanorods for nitrogen photofixation. New J Chem 44:7350–7356. https://doi.org/10.1039/d0nj01102a

    Article  CAS  Google Scholar 

  15. Zhang C, Xu Y, Lv C et al (2020) Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation. Appl Catal B Environ 264:118416. https://doi.org/10.1016/j.apcatb.2019.118416

    Article  CAS  Google Scholar 

  16. Zhang Y, Hou T, Xu Q et al (2021) Dual-metal sites boosting polarization of nitrogen molecules for efficient nitrogen photofixation. Adv Sci 8:2100302. https://doi.org/10.1002/advs.202100302

    Article  CAS  Google Scholar 

  17. Hao Q, Liu C, Jia G et al (2020) Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects. Mater Horiz 7:1014–1029. https://doi.org/10.1039/c9mh01668f

    Article  CAS  Google Scholar 

  18. Huang Y, Zhang N, Wu Z, Xie X (2020) Artificial nitrogen fixation over bismuth-based photocatalysts: fundamentals and future perspectives. J Mater Chem A 8:4978–4995. https://doi.org/10.1039/c9ta13589h

    Article  CAS  Google Scholar 

  19. Cong S, Geng F, Zhao Z (2016) Tungsten oxide materials for optoelectronic applications. Adv Mater 28:10518–10528. https://doi.org/10.1002/adma.201601109

    Article  CAS  Google Scholar 

  20. Samuel O, Othman MHD, Kamaludin R et al (2022) WO3–based photocatalysts: a review on synthesis, performance enhancement and photocatalytic memory for environmental applications. Ceram Int 48:5845–5875. https://doi.org/10.1016/j.ceramint.2021.11.158

    Article  CAS  Google Scholar 

  21. Shandilya P, Sambyal S, Sharma R et al (2022) Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts. J Hazard Mater 428:128218. https://doi.org/10.1016/j.jhazmat.2022.128218

    Article  CAS  Google Scholar 

  22. Yang Z, Wang J, Wang J et al (2022) 2D WO3−x nanosheet with rich oxygen vacancies for efficient visible-light-driven photocatalytic nitrogen fixation. Langmuir 38:1178–1187. https://doi.org/10.1021/acs.langmuir.1c02862

    Article  CAS  Google Scholar 

  23. Zhu P, Sun X, Wang Y et al (2021) Multifunctional oxygen vacancies in WO3–x for catalytic alkylation of C-H by alcohols under red-light. J Catal 402:208–217. https://doi.org/10.1016/j.jcat.2021.08.040

    Article  CAS  Google Scholar 

  24. Ye X, Wei C, Xue S et al (2022) Atomistic observation of temperature-dependent defect evolution within sub-stoichiometric WO3–x catalysts. ACS Appl Mater Interfaces 14:2194–2201. https://doi.org/10.1021/acsami.1c17159

    Article  CAS  Google Scholar 

  25. Mao C, Wang J, Zou Y et al (2019) Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chem 21:2852–2867. https://doi.org/10.1039/c9gc01010f

    Article  CAS  Google Scholar 

  26. Hui X, Wang L, Yao Z et al (2022) Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia. Front Chem 10:978078. https://doi.org/10.3389/fchem.2022.978078

    Article  CAS  Google Scholar 

  27. Ren W, Mei Z, Zheng S et al (2020) Wavelength-dependent solar N2 fixation into ammonia and nitrate in pure water. Research. https://doi.org/10.34133/2020/3750314

    Article  Google Scholar 

  28. Zhang N, Jalil A, Wu D et al (2018) Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J Am Chem Soc 140:9434–9443. https://doi.org/10.1021/jacs.8b02076

    Article  CAS  Google Scholar 

  29. Li R (2018) Photocatalytic nitrogen fixation: an attractive approach for artificial photocatalysis. Chin J Catal 39:1180–1188. https://doi.org/10.1016/s1872-2067(18)63104-3

    Article  CAS  Google Scholar 

  30. Bian X, Zhao Y, Zhang S et al (2021) Enhancing the supply of activated hydrogen to promote photocatalytic nitrogen fixation. ACS Mater Lett 3:1521–1527. https://doi.org/10.1021/acsmaterialslett.1c00504

    Article  CAS  Google Scholar 

  31. Boruah PJ, Khanikar RR, Bailung H (2020) Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3−x) nanoparticles by plasma discharge in liquid and its photocatalytic activity. Plasma Chem Plasma Process 40:1019–1036. https://doi.org/10.1007/s11090-020-10073-3

    Article  CAS  Google Scholar 

  32. Rougier A, Portemer F, Quédé A, El Marssi M (1999) Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Appl Surf Sci 153:1–9. https://doi.org/10.1016/S0169-4332(99)00335-9

    Article  CAS  Google Scholar 

  33. Phuruangrat A, Ham DJ, Hong SJ et al (2010) Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J Mater Chem 20:1683–1690. https://doi.org/10.1039/B918783A

    Article  CAS  Google Scholar 

  34. Yu Z, Yang K, Yu C et al (2022) Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction. Adv Funct Mater 32:2111999. https://doi.org/10.1002/adfm.202111999

    Article  CAS  Google Scholar 

  35. Yu SQ, Ling YH, Zhang J et al (2017) Efficient photoelectrochemical water splitting and impedance analysis of WO3−x nanoflake electrodes. Int J Hydrogen Energy 42:20879–20887. https://doi.org/10.1016/j.ijhydene.2017.01.177

    Article  CAS  Google Scholar 

  36. Sun S, Watanabe M, Wu J et al (2018) Ultrathin WO3·0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity. J Am Chem Soc 140:6474–6482. https://doi.org/10.1021/jacs.8b03316

    Article  CAS  Google Scholar 

  37. Deng Y, Li J, Zhang R et al (2022) Solar-energy-driven photothermal catalytic C-C coupling from CO2 reduction over WO3–x. Chin J Catal 43:1230–1237. https://doi.org/10.1016/s1872-2067(21)63868-8

    Article  CAS  Google Scholar 

  38. Zhang M, Sun H, Guo Y et al (2021) Synthesis of oxygen vacancies implanted ultrathin WO3-x nanorods/reduced graphene oxide anode with outstanding Li-ion storage. J Mater Sci 56:7573–7586. https://doi.org/10.1007/s10853-020-05747-4

    Article  CAS  Google Scholar 

  39. Ruan Q, Wang H, Lin H et al (2020) Unique ternary Cd0.85Zn0.15S@WO3/WS2 core-shell nanorods for highly-efficient photocatalytic H2 evolution under visible-light irradiation. Int J Hydrogen Energy 45:27160–27170. https://doi.org/10.1016/j.ijhydene.2020.07.057

    Article  CAS  Google Scholar 

  40. Shi Y, Liu S, Zhang Y et al (2019) Construction of WO3/Ti-doped WO3 bi-layer nanopore arrays with superior electrochromic and capacitive performances. Tungsten 1:236–244. https://doi.org/10.1007/s42864-019-00024-7

    Article  Google Scholar 

  41. Ma Y, Xu J, Xu S et al (2023) Construction of 3D/3D heterojunction between new noble metal free ZnIn2S4 and non-inert metal NiMoO4 for enhanced hydrogen evolution performance under visible light. Int J Hydrogen Energy 48: 26707–26717. https://doi.org/10.1016/j.ijhydene.2023.03.286

    Article  CAS  Google Scholar 

  42. Shi K, Zhou M, Wang F et al (2023) Perylene diimide/iron phthalocyanine Z-scheme heterojunction with strong interfacial charge transfer through π-π interaction: efficient photocatalytic degradation of tetracycline hydrochloride. Chemosphere 329:138617. https://doi.org/10.1016/j.chemosphere.2023.138617

    Article  CAS  Google Scholar 

  43. Liu D, Wang C, Yu Y et al (2019) Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem 5:376–389. https://doi.org/10.1016/j.chempr.2018.11.001

    Article  CAS  Google Scholar 

  44. Ji M, Shao Y, Nkudede E et al (2022) Oxygen vacancy triggering the broad-spectrum photocatalysis of bismuth oxyhalide solid solution for ciprofloxacin removal. J Colloid Interface Sci 626:221–230. https://doi.org/10.1016/j.jcis.2022.06.076

    Article  CAS  Google Scholar 

  45. Shang H, Ye X, Jia H et al (2023) Boosting photocatalytic N2 fixation on N-defect g-C3N4 /WO3: the synergistic effects of nitrogen vacancy and Z-scheme heterojunction. Adv Mater Technol 8:2201579. https://doi.org/10.1002/admt.202201579

    Article  CAS  Google Scholar 

  46. Zhang Y, Di J, Zhu X et al (2023) Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Appl Catal B Environ 323:122148. https://doi.org/10.1016/j.apcatb.2022.122148

    Article  CAS  Google Scholar 

  47. Li C-Q, Yi S-S, Chen D et al (2019) Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production. J Mater Chem A 7:17974–17980. https://doi.org/10.1039/c9ta03701b

    Article  CAS  Google Scholar 

  48. Zhang C, Zheng X, Ning Y et al (2023) Enhancing long-term stability of bio-photoelectrochemical cell by defect engineering of a WO3-x photoanode. J Energy Chem 80:584–593. https://doi.org/10.1016/j.jechem.2023.02.003

    Article  CAS  Google Scholar 

  49. Tu J, Lei H, Yu Z, Jiao S (2018) Ordered WO3−x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries. Chem Commun 54:1343–1346. https://doi.org/10.1039/c7cc09376d

    Article  CAS  Google Scholar 

  50. Zhang J, Yue L, Zeng Z et al (2023) Preparation of NaNbO3 microcube with abundant oxygen vacancies and its high photocatalytic N2 fixation activity in the help of Pt nanoparticles. J Colloid Interface Sci 636:480–491. https://doi.org/10.1016/j.jcis.2023.01.049

    Article  CAS  Google Scholar 

  51. Chu K, Luo Y, Shen P et al (2022) Unveiling the synergy of O-vacancy and heterostructure over MoO3-x /MXene for N2 electroreduction to NH3. Adv Energy Mater 12:2103022. https://doi.org/10.1002/aenm.202103022

    Article  CAS  Google Scholar 

  52. Wang F, Yu Z, Shi K et al (2023) One-pot synthesis of N-doped NiO for enhanced photocatalytic CO2 reduction with efficient charge transfer. Molecules 28:2435. https://doi.org/10.3390/molecules28062435

    Article  CAS  Google Scholar 

  53. Li Y, Liu Y, Liu X, Li X (2023) One-step synthesis of CdS/BiOCl: efficient visible light reactive photocatalysts with Z-scheme heterogeneous structure. J Mater Sci 58:5574–5586. https://doi.org/10.1007/s10853-023-08358-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of National Natural Science Foundation of China (22366018, 21962006, 22272034), Jiangxi Province “Double Thousand” Talent Training Plan (jxsq2023201086, Hou Yang, jxsq2023102141), Jiangxi Provincial Academic and Technical Leaders Training Program--Young Talents (20204BCJL23037), Key Projects of Jiangxi Natural Science Foundation (20232ACB203022), Program of Qingjiang Excellent Young Talents, JXUST (JXUSTQJBJ2020005), Ganzhou Young Talents Program of Jiangxi Province (204301000111), Postdoctoral Research Projects of Jiangxi Province in 2020 (204302600031), Jiangxi Provincial Natural Science Foundation (20224BAB203018, 20212BAB213016) and the Foundation Engineering Research Center of Tungsten Resources High-Efficiency Development and Application Technology of the Ministry of Education (W-2021YB003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.Y.; methodology, K.Y., C.Y. and K.L.; investigation, K.S.; resources, K.Y., C.Y., K.L. and W.H.; data curation, X.L.; writing—original draft preparation, K.S. and F.W.; writing—review and editing, K.S. and X.L.; visualization, K.S.; supervision, K.Y. and C.Y.; project administration, K.Y. and C.Y.; funding acquisition, K.Y. and C.Y. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Changlin Yu or Kai Yang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2997 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Wang, F., Li, X. et al. Defect-engineered WO3−x nanosheets for optimized photocatalytic nitrogen fixation and hydrogen production. J Mater Sci 58, 16309–16321 (2023). https://doi.org/10.1007/s10853-023-09093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09093-z

Navigation