Skip to main content

Advertisement

Log in

Al3+ based solid electrolytes for electrochromic applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The solid-state electrolytes have attractive properties for electrochromic (EC) devices and battery industries. Li+ ion is the most applied and investigated carrier ion in this field together with less commonly ions Mg2+, Na+ H+ and Al3+. In this study, we have investigated Al3+ solid electrolytes for WO3 based EC devices as alternative to Li+ ions. We have fabricated a series of AlSiOx thin films by applying different target powers of 0–15 W by magnetron sputtering method. The resulting films were characterized by Grazing incidence X-ray diffraction, atomic force microscopy, scanning electron microscopy, energy disperse spectroscopy, ultraviolet–visible-infrared spectrophotometer, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy (EIS). All samples showed high transparency in the visible range (~ 90%) while the transparency decreased about 10% in the near infrared region. Analysis of EIS data by Kramers–Kronig and Voigt models showed that some of the films have good ionic conductivity. The ionic conductivities of films grown with 10 W, 13 W and 15 W Al target powers were 1.54 × 10–6, 5.68 × 10–7 and 2.72 × 10–8 S/cm, respectively. The results indicate that AlSiOx solid electrolytes are promising for EC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and code availability

Not Applicable.

References

  1. Li J, Yao Z, Wang Y, Zhang W, Zhang YM, Zhang SXA (2022) A flexible flame-retardant electrochromic device. Mater Lett 317(March):132106–132111. https://doi.org/10.1016/j.matlet.2022.132106

    Article  CAS  Google Scholar 

  2. Sbar NL, Podbelski L, Yang HM, Pease B (2012) Electrochromic dynamic windows for office buildings. Int J Sustain Built Environ 1(1):125–139. https://doi.org/10.1016/j.ijsbe.2012.09.001

    Article  Google Scholar 

  3. Gu S, Wang H, Wu C, Bai Y, Li H, Wu F (2017) Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater 6:9–17. https://doi.org/10.1016/j.ensm.2016.09.001

    Article  Google Scholar 

  4. Cochrane C, Meunier L, Kell FM, Koncar V (2011) Flexible displays for smart clothing: part I-overview. Indian J Fibre Text Res 36(4):422–428

    CAS  Google Scholar 

  5. Qi J, Qiu F, Zhao Y (2021) Self-powered electrochromic windows for smart homes realized by hybridizing enhanced perovskite solar cells. In: Proceedings of international conference on ASIC, pp 4–7. https://doi.org/10.1109/ASICON52560.2021.9620420

  6. Mengying W, Hang Y, Xu W, Xungang D (2021) High-performance of quasi-solid-state complementary electrochromic devices based on Al3+/Li+ dual-ion electrolyte. Solar Energy Mater Solar Cells 230(December 2020):111196–111206. https://doi.org/10.1016/j.solmat.2021.111196

    Article  CAS  Google Scholar 

  7. Choi CH, Cho WI, Cho BW, Kim HS, Yoon YS, Tak YS (2002) Radio-frequency magnetron sputtering power effect on the ionic conductivities of Lipon films. Electrochem Solid-State Lett 5(1):14–17. https://doi.org/10.1149/1.1420926

    Article  Google Scholar 

  8. Mak AK et al (2022) Effect of Al doping on the electrochromic properties of WO3 thin films. Thin Solid Films 751:139241–139253. https://doi.org/10.1016/J.TSF.2022.139241

    Article  CAS  Google Scholar 

  9. Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60(3):201–262. https://doi.org/10.1016/S0927-0248(99)00088-4

    Article  CAS  Google Scholar 

  10. Yang JL, Lai YS, Chen JS (2005) Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering. Thin Solid Films 488(1–2):242–246. https://doi.org/10.1016/j.tsf.2005.04.061

    Article  CAS  Google Scholar 

  11. Choi CH, Cho WI, Cho BW, Kim HS, Yoon YS, Tak YS (2002) Radio-frequency magnetron sputtering power effect on the ionic conductivities of Lipon films. Electrochem Solid-State Lett 5:A14–A17. https://doi.org/10.1149/1.1420926

    Article  CAS  Google Scholar 

  12. Kaneko F, Masuda Y, Nakayama M, Wakihara M (2007) Electrochemical performances of lithium ion battery using alkoxides of group 13 as electrolyte solvent. Electrochim Acta 53:549–554. https://doi.org/10.1016/j.electacta.2007.07.005

    Article  CAS  Google Scholar 

  13. Liu M, Ganapathy S, Wagemaker M (2022) A direct view on li-ion transport and li-metal plating in inorganic and hybrid solid-state electrolytes. Acc Chem Res 55(3):333–344. https://doi.org/10.1021/acs.accounts.1c00618

    Article  CAS  Google Scholar 

  14. Zhao X et al (2022) Enhanced electrochromic performance of all-solid-state electrochromic device based on W-doped NiO films. Coatings 12:118–125. https://doi.org/10.3390/coatings12020118

    Article  CAS  Google Scholar 

  15. Wang H et al (2023) Solar energy materials and solar cells influence of LiPON thickness on the electro-optical performance of inorganic all-solid-state electrochromic devices. Solar Energy Mater Solar Cells 251(November 2022):112140–112150. https://doi.org/10.1016/j.solmat.2022.112140

    Article  CAS  Google Scholar 

  16. Guo J et al (2018) Prominent Electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 Films. J Phys Chem C 122(33):19037–19043. https://doi.org/10.1021/acs.jpcc.8b05692

    Article  CAS  Google Scholar 

  17. Qiu D et al (2019) Electrochromism of Nanocrystal-in-glass tungsten oxide thin films under various conduction cations. Inorg Chem 58(3):2089–2098. https://doi.org/10.1021/acs.inorgchem.8b03178

    Article  CAS  Google Scholar 

  18. Mak AK, Tuna Ö, Öztürk O, Karabulut M (2022) Comparison of Al3+ and Li+ liquid electrolytes for as deposited and heat treated WO3 thin films for electrochromic applications. Solid State Ion 386(July):116059–116072. https://doi.org/10.1016/j.ssi.2022.116059

    Article  CAS  Google Scholar 

  19. Wang J, Xie S, Shi Q, Wang H, Yang H, Lin S (2022) Effect of the thicknesses of the Al2SiO5 ion conductor on the opto-electrical properties for all-solid electrochromic devices. Ceram Int 48:31491–31499. https://doi.org/10.1016/j.ceramint.2022.07.068

    Article  CAS  Google Scholar 

  20. Gredelj S, Gerson AR, Kumar S, Cavallaro GP (2001) Characterization of aluminium surfaces with and without plasma nitriding by X-ray photoelectron spectroscopy. Appl Surf Sci 174(3–4):240–250. https://doi.org/10.1016/S0169-4332(01)00169-6

    Article  CAS  Google Scholar 

  21. Tamsu N, Neslihan S (2023) Valorization of aluminium slags to produce sustainable ceramic wall tiles. J Austr Ceramic Soc. https://doi.org/10.1007/s41779-023-00905-8

    Article  Google Scholar 

  22. Zhang M, Kamavaram V, Reddy RG (2003) New electrolytes for aluminum production: ionic liquids. Jom 55(11):54–57. https://doi.org/10.1007/s11837-003-0211-y

    Article  CAS  Google Scholar 

  23. Kamavaram V, Reddy RG (2005) Recycling of Al-MMC in ionic liquids at low temperature. In: TMS Annual Meeting, no. January 2005, pp 1077–1086

  24. Wagner CD et al (1982) Auger and photoelectron line energy relationships in Al–O and Si–O compounds. J Vac Sci Technol 21(4):933–944

    Article  CAS  Google Scholar 

  25. P. E. S., K. D. B. John F. Moulder, Stickle WF (1992) Handbook of X-ray photoelectron spectroscopy. In: Perkin-Elmer Corporation, https://doi.org/10.1002/0470014229.ch22

  26. Savio L et al (2021) Correlating hydrophobicity to surface chemistry of microstructured aluminium surfaces. Appl Surf Sci 542(August 2020):148574–148583. https://doi.org/10.1016/j.apsusc.2020.148574

    Article  CAS  Google Scholar 

  27. Werrett CR, Pyke DR, Bhattacharya AK (1997) XPS studies of oxide growth and segregation in aluminium-silicon alloys. Surf Interface Anal 25(10):809–816. https://doi.org/10.1002/(SICI)1096-9918(199709)25:10%3c809::AID-SIA304%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  28. Huang J, Xiang C, Li S, Zhao X, He G (2014) Preparation, characterization and performance of Ti1–xAlxN/Ag/Ti1–xAlxN low-emissivity films. Appl Surf Sci 293:259–264. https://doi.org/10.1016/j.apsusc.2013.12.146

    Article  CAS  Google Scholar 

  29. Giner-Sanz JJ, Ortega EM, Pérez-Herranz V (2016) Application of a Montecarlo based quantitative Kramers–Kronig test for linearity assessment of EIS measurements. Electrochim Acta 209:254–268. https://doi.org/10.1016/j.electacta.2016.04.131

    Article  CAS  Google Scholar 

  30. Choi W, Shin H-C, Kim JM, Choi J-Y, Yoon W-S (2020) Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J Electrochem Sci Technol 11(1):1–13. https://doi.org/10.33961/jecst.2019.00528

    Article  CAS  Google Scholar 

  31. Bates JB et al (1992) Electrical properties of amorphous lithium electrolyte thin films. Solid State Ion 5356(PART 1):647–654. https://doi.org/10.1016/0167-2738(92)90442-R

    Article  Google Scholar 

  32. Li G, Li M, Dong L, Li X, Li D (2014) Low energy ion beam assisted deposition of controllable solid state electrolyte LiPON with increased mechanical properties and ionic conductivity. Int J Hydrogen Energy 39(30):17466–17472. https://doi.org/10.1016/j.ijhydene.2014.01.012

    Article  CAS  Google Scholar 

  33. Torbati-Sarraf H, Ding L, Khakpour I, Poursaee A (2021) Electrochemical impedance spectroscopic analyses of the influence of the surface nanocrystallization on the passivation of carbon steel in the pore solution. J Mater Civil Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0003523

    Article  Google Scholar 

  34. Keddam M, Takenouti H, Nóvoa XR, Andrade C, Alonso C (1997) Impedance measurements on cement paste. Cem Concr Res 27(8):1191–1201. https://doi.org/10.1016/S0008-8846(97)00117-8

    Article  CAS  Google Scholar 

  35. Prins JA (1928) Über die dispersion und absorption von Röntgenstrahlen. Z Phys 47(7–8):479–498. https://doi.org/10.1007/BF01340334

    Article  CAS  Google Scholar 

  36. Agarwal P, Orazem ME, Garcia-Rubio LH (1995) Application of measurement models to impedance spectroscopy: III. Evaluation of consistency with the Kramers–Kronig relations. J Electrochem Soc 142(12):4159–4168. https://doi.org/10.1149/1.2048479

    Article  CAS  Google Scholar 

  37. Raistrick ID, Franceschetti DR, Macdonald JR (2005). Theory. https://doi.org/10.1002/0471716243.ch2

    Article  Google Scholar 

  38. Oukassi S, Giroud-Garampon C, Dubarry C, Ducros C, Salot R (2016) All inorganic thin film electrochromic device using LiPON as the ion conductor. Sol Energy Mater Sol Cells 145:2–7. https://doi.org/10.1016/j.solmat.2015.06.052

    Article  CAS  Google Scholar 

  39. Xiao Y et al (2018) The role of interface between LiPON solid electrolyte and electrode in inorganic monolithic electrochromic devices. Electrochim Acta 260:254–263. https://doi.org/10.1016/j.electacta.2017.12.020

    Article  CAS  Google Scholar 

  40. Li W et al (2020) Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chem Eng J 398:125628. https://doi.org/10.1016/j.cej.2020.125628

    Article  CAS  Google Scholar 

  41. Xie L et al (2019) High performance and excellent stability of all-solid-state electrochromic devices based on a Li1.85AlOz ion conducting layer. ACS Sustain Chem Eng 7(20):17390–17396. https://doi.org/10.1021/acssuschemeng.9b04501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Gebze Technical University and Şişecam Science, Technology and Design Center within the scope of Scientific and Technological Research Council of Türkiye (TUBITAK) 2244 Industrial Doctorate Program with project number 118C098.

Author information

Authors and Affiliations

Authors

Contributions

AKM contributed to conceptualization, methodology, investigation, formal analysis, writing the original draft, writing—review and editing; ÖT contributed to funding acquisition, writing—review and editing; ST contributed to funding acquisition. OÖ contributed to funding acquisition, writing—review and editing, formal analysis; MK contributed to conceptualization, funding acquisition, writing original draft, writing—review and editing, formal analysis, supervision.

Corresponding authors

Correspondence to Ali Kemal Mak or Mevlüt Karabulut.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7201 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mak, A.K., Tuna, Ö., Türküz, S. et al. Al3+ based solid electrolytes for electrochromic applications. J Mater Sci 58, 12736–12746 (2023). https://doi.org/10.1007/s10853-023-08826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08826-4

Navigation