Skip to main content
Log in

A review on applications of functional superhydrophobic surfaces prepared by laser biomimetic manufacturing

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inspired by animals or plants in nature, the surface of many industrial products is endowed with superhydrophobic properties according to the principle of bionics, thus solving multiple industrial problems, such as self-cleaning, underwater drag reduction, droplet or bubble control, delayed icing, corrosion prevention, biomimetic deposition, optical applications, anisotropy, oil–water separation and so on. As an advanced method for preparing superhydrophobic surfaces, laser biomimetic manufacturing has the characteristics of high efficiency, flexibility and controllability. Therefore, laser biomimetic manufacturing technology has received extensive attention in recent years, and has been widely studied in the superhydrophobic fields. This paper highlights the latest research progress of application of functional superhydrophobic surface prepared by laser biomimetic manufacturing. Finally, the future research directions for functional superhydrophobic surface are discussed, and the development has been prospected.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Similar content being viewed by others

Data availability

All data and codes availability are in the body of the manuscript.

References

  1. Arzt E, Quan HC, Mcmeeking RM, Hensel R (2021) Functional surface microstructures inspired by nature from adhesion and wetting principles to sustainable new devices. Prog Mater Sci 120:100778

    Article  Google Scholar 

  2. Zhao J, Guo J, Shrotriya P, Wang Y, Han Y, Dong Y, Yang S (2019) A rapid one-step nanosecond laser process for fabrication of super-hydrophilic aluminum surface. Opt Laser Technol 117:134–141

    Article  CAS  Google Scholar 

  3. Dong Z, Sun X, Kong D, Chu D, Duan J (2020) Spatial light modulated femtosecond laser ablated durable superhydrophobic copper mesh for oil-water separation and self-cleaning. Surf Coat Technol 402:126254

    Article  CAS  Google Scholar 

  4. Raut HK, Ranganath AS, Baji A, Wood KL (2019) Bio-inspired hierarchical topography for texture driven fog harvesting. Appl Surf Sci 465:362–368

    Article  CAS  Google Scholar 

  5. Hensel R, Neinhuis C, Werner C (2016) The springtail cuticle as a blueprint for omniphobic surfaces. Chem Soc Rev 45:323–341

    Article  CAS  Google Scholar 

  6. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213–2217

    Article  CAS  Google Scholar 

  7. Yong J, Chen F, Fang Y, Huo J, Yang Q, Zhang J, Bian H, Hou X (2017) Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl Mater Interfaces 9:39863–39871

    Article  CAS  Google Scholar 

  8. Das S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) A review on superhydrophobic polymer nanocoatings: recent development and applications. Ind Eng Chem Res 57:2727–2745

    Article  CAS  Google Scholar 

  9. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  10. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Article  CAS  Google Scholar 

  11. Yang L, Shen X, Yang Q, Liu J, Wu W, Li D, Du J, Zhang B, Fan S (2021) Fabrication of biomimetic anisotropic super-hydrophobic surface with rice leaf-like structures by femtosecond laser. Opt Mater 112:110740

    Article  CAS  Google Scholar 

  12. Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432:36

    Article  CAS  Google Scholar 

  13. Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3:178–182

    Article  CAS  Google Scholar 

  14. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Article  CAS  Google Scholar 

  15. Wu W, Wang J, Liu Q, Xiao H, Li X, Zhou Y, Wang H, Zheng A, Zhao J, Ren L, Li G (2022) Electrochemical polishing assisted selective laser melting of biomimetic superhydrophobic metallic parts. Appl Surf Sci 596:153601

    Article  CAS  Google Scholar 

  16. Liu M, Wang S, Wei Z, Song Y, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21:665–669

    Article  CAS  Google Scholar 

  17. Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, Walheim S, Weis A, Kaltenmaier A, Leder A (2010) The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater 22:2325–2328

    Article  CAS  Google Scholar 

  18. Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L (2012) A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 3:1–6

    Article  Google Scholar 

  19. Zhu Y, Sun F, Qian H, Wang H, Mu L, Zhu J (2018) A biomimetic spherical cactus superhydrophobic coating with durable and multiple anti-corrosion effects. Chem Eng J 338:670–679

    Article  CAS  Google Scholar 

  20. Comanns P, Buchberger G, Buchsbaum A, Baumgartner R, Kogler A, Bauer S et al (2015) Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic ‘liquid diode.’ J Royal Soc Interface 12:20150415

    Article  Google Scholar 

  21. Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L (2016) Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532:85–89

    Article  CAS  Google Scholar 

  22. Labonte D, Robinson A, Bauer U, Federle W (2021) Disentangling the role of surface topography and intrinsic wettability in the prey capture mechanism of Nepenthes pitcher plants. Acta Biomater 119:225–233

    Article  CAS  Google Scholar 

  23. Li K, Xie Y, Lei J, Zhang S, Liu Z, Lu L (2021) An inspiration from purple orchid leaves: surface characteristics and wettability of nanoscale organometallic coatings electrodeposited on laser-patterned microstructures. Surf Coat Technol 427:127817

    Article  CAS  Google Scholar 

  24. Liu C, Ju J, Zheng Y, Jiang L (2014) Asymmetric ratcheteffect for directional transport of fog drops on static and dynamic butterfly wings. ACS Nano 8:1321–1329

    Article  CAS  Google Scholar 

  25. Si Y, Dong Z, Jiang L (2018) Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Cent Sci 4:1102–1112

    Article  CAS  Google Scholar 

  26. Gu Y, Zhang W, Mou J, Zheng S, Jiang L, Sun Z, Wang E (2017) Research progress of biomimetic superhydrophobic surface characteristics, fabrication, and application. Adv Mech Eng 9:1687814017746859

    Article  Google Scholar 

  27. Erbil HY (2020) Practical applications of superhydrophobic materials and coatings: problems and perspectives. Langmuir 36:2493–2509

    Article  CAS  Google Scholar 

  28. Wang F, Pi J, Song F, Feng R, Xu C, Wang X, Wang Y (2020) A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness. Chem Eng J 381:122539

    Article  CAS  Google Scholar 

  29. Dimitrakellis P, Gogolides E (2018) Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: a review. Adv Colloid Interface Sci 254:1–21

    Article  CAS  Google Scholar 

  30. Ghaffari S, Aliofkhazraei M, Barati Darband G, Zakeri A, Ahmadi E (2018) Review of superoleophobic surfaces: evaluation, fabrication methods, and industrial applications. Surf Interfaces 17:100340

    Article  Google Scholar 

  31. Zhang P, Lv F (2015) A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82:1068–1087

    Article  Google Scholar 

  32. Fihri A, Bovero E, Al-Shahrani A, Al-Ghamdi A, Alabedi G (2017) Recent progress in superhydrophobic coatings used for steel protection: A review. J Colloids Surf A 520:378–390

    Article  CAS  Google Scholar 

  33. Sun J, Li H, Huang Y, Zheng X, Liu Y, Zhuang J, Wu D (2019) Simple and affordable way to achieve polymeric superhydrophobic surfaces with biomimetic hierarchical roughness. ACS Omega 4:2750–2757

    Article  CAS  Google Scholar 

  34. Vazirinasab E, Jafari R, Momen G (2018) Application of superhydrophobic coatings as a corrosion barrier: a review. Surf Coat Technol 341:40–56

    Article  CAS  Google Scholar 

  35. Li F, Wang Z, Huang S, Pan Y, Zhao X (2018) Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil-water separation. Adv Funct Mater 28:1706867

    Article  Google Scholar 

  36. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc London 95:65–87

    Article  Google Scholar 

  37. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  38. Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  39. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on –CF3 alignment. Langmuir 15:4321–4323

    Article  CAS  Google Scholar 

  40. Fukuda K, Tokunaga J, Nobunaga T, Nakatani T, Iwasaki T, Kunitake Y (2005) Frictional drag reduction with air lubricant over a super-water-repellent surface. J Mar Sci Technol 5:123–130

    Article  Google Scholar 

  41. Guo F, Duan S, Wu D, Matsuda K, Wang T, Zou Y (2021) Facile etching fabrication of superhydrophobic 7055 aluminum alloy surface towards chloride environment anticorrosion. Corros Sci 182:109262

    Article  CAS  Google Scholar 

  42. Kietzig AM, Hatzikiriakos SG, Englezos P (2009) Patterned superhydrophobic metallic surfaces. Langmuir 25:4821–4827

    Article  CAS  Google Scholar 

  43. Rukosuyev MV, Lee J, Cho SJ, Lim G, Jun MB (2014) One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation. Appl Surf Sci 313:411–417

    Article  CAS  Google Scholar 

  44. Long J, Fan P, Gong D, Jiang D, Zhang H, Li L, Zhong M (2015) Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. ACS Appl Mater Interfaces 7:9858–9865

    Article  CAS  Google Scholar 

  45. Martínez-Calderon M, Rodríguez A, Dias-Ponte A, Morant-Miñana M, Gómez-Aranzadi M, Olaizola S (2016) Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS. Appl Surf Sci 374:81–89

    Article  Google Scholar 

  46. Dunn A, Wasley TJ, Li J, Kay RW, Stringer J, Smith PJ, Esenturk E, Connaughton C, Shephard JD (2016) Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Appl Surf Sci 365:153–159

    Article  Google Scholar 

  47. Jagdheesh R, García-Ballesteros J, Ocaña J (2016) One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation. Appl Surf Sci 374:2–11

    Article  CAS  Google Scholar 

  48. Ta DV, Dunn A, Wasley TJ, Kay RW, Stringer J, Smith PJ, Connaughton C, Shephard JD (2015) Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl Surf Sci 357:248–254

    Article  CAS  Google Scholar 

  49. Yang Z, Liu X, Tian Y (2019) Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J Colloid Interface Sci 533:268–277

    Article  CAS  Google Scholar 

  50. Dinh TH, Ngo CV, Chun DM (2018) Controlling the wetting properties of superhydrophobic titanium surface fabricated by UV nanosecond-pulsed laser and heat treatment. Nanomaterials 8:766

    Article  Google Scholar 

  51. Dong L, Zhang Z, Ding R, Wang L, Liu M, Weng Z, Wang Z, Li D (2019) Controllable superhydrophobic surfaces with tunable adhesion fabricated by laser interference lithography. Surf Coat Technol 372:434–441

    Article  CAS  Google Scholar 

  52. Liu R, Chi Z, Cao L, Weng Z, Wang L, Li L, Saeed S, Lian Z, Wang Z (2020) Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment. Appl Surf Sci 534:147576

    Article  CAS  Google Scholar 

  53. Liu Y, Li S, Wang Y, Wang H, Gao K, Han Z, Ren L (2016) Superhydrophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: wettability and corrosion inhibition. J Colloid Interface Sci 478:164–171

    Article  CAS  Google Scholar 

  54. Shen L, Fan M, Qiu M, Jiang W, Wang Z (2019) Superhydrophobic nickel coating fabricated by scanning electrodeposition. Appl Surf Sci 483:706–712

    Article  CAS  Google Scholar 

  55. Wang Z, Shen L, Jiang W, Fan M, Liu D, Zhao J (2019) Superhydrophobic nickel coatings fabricated by scanning electrodeposition on stainless steel formed by selective laser melting. Surf Coat Technol 377:124886

    Article  CAS  Google Scholar 

  56. Rezaei S, Manoucheri I, Moradian R, Pourabbas B (2014) One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chem Eng J 252:11–16

    Article  CAS  Google Scholar 

  57. Zhang F, Shi Z, Chen L, Jiang Y, Xu C, Wu Z, Wang Y, Peng C (2017) Porous superhydrophobic and superoleophilic surfaces prepared by template assisted chemical vapor deposition. Surf Coat Technol 315:385–390

    Article  Google Scholar 

  58. Zheng J, Yang J, Cao W, Huang Y, Zhou Z, Huang Y (2022) Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods. Ceram Int 48:32143–32151

    Article  CAS  Google Scholar 

  59. Fu J, Sun Y, Ji Y, Zhang J (2022) Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods. J Mater Process Technol 306:117641

    Article  CAS  Google Scholar 

  60. Vengatesh P, Kulandainathan MA (2015) Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl Mater Interfaces 7:1516–1526

    Article  CAS  Google Scholar 

  61. Li S, Xiang X, Ma B, Meng X (2019) Facile preparation of diverse alumina surface structures by anodization and superhydrophobic surfaces with tunable water droplet adhesion. J Alloys Compd 779:219–228

    Article  CAS  Google Scholar 

  62. Ganbavle VV, Bangi UK, Latthe SS, Mahadik SA, Rao AV (2011) Self-cleaning silica coatings on glass by single step sol–gel route. Surf Coat Technol 205:5338–5344

    Article  CAS  Google Scholar 

  63. Gurav AB, Latthe SS, Vhatkar RS (2013) Sol–gel-processed porous water-repellent silica microbowls. Surf Innov 1:157–161

    Article  Google Scholar 

  64. Latthe SS, Terashima C, Nakata K, Sakai M, Fujishima A (2014) Development of sol–gel processed semi-transparent and self-cleaning superhydrophobic coatings. J Mater Chem A 2:5548–5553

    Article  CAS  Google Scholar 

  65. Bai N, Li Q, Dong H, Tan C, Cai P, Xu L (2016) A versatile approach for preparing self-recovering superhydrophobic coatings. Chem Eng J 293:75–81

    Article  CAS  Google Scholar 

  66. Ryu J, Kim K, Park J, Hwang BG, Ko Y, Kim H, Han J, Seo E Park Y, Lee S (2017) Nearly perfect durable superhydrophobic surfaces fabricated by a simple one-step plasma treatment. Sci Rep 7:1–8

    Article  Google Scholar 

  67. Zhu H, Buchtal TJ, Mitsuishi M (2021) Self-assembling superstructures of cyclosiloxane amphiphiles with complex flower shapes and superhydrophobic properties. Appl Surf Sci 563:150245

    Article  CAS  Google Scholar 

  68. Fleming RA, Zou M (2013) Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability. Appl Surf Sci 280:820–827

    Article  CAS  Google Scholar 

  69. Sun R, Zhao J, Li Z, Mo J, Pan Y, Luo D (2019) Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification. Prog Org Coat 133:77–84

    Article  CAS  Google Scholar 

  70. Celik N, Torun I, Ruzi M, Esidir A, Onses MS (2020) Fabrication of robust superhydrophobic surfaces by one-step spray coating: evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem Eng J 396:125230

    Article  CAS  Google Scholar 

  71. Tong J, Liu S, Peng R, Sun H, Jiang S (2021) Development of a micro/nano composite super-hydrophobic silicon surface with nail-shaped texture/dual self-assembly monolayers and its wetting behavior. Appl Surf Sci 544:148803

    Article  CAS  Google Scholar 

  72. Etsion I (2005) State of the art in laser surface texturing. J Trib 127:248–253

    Article  Google Scholar 

  73. Ijaola AO, Bamidele EA, Akisin CJ, Bello IT, Oyatobo AT, Abdulkareem A, Farayibi PK, Asmatulu E (2020) Wettability transition for laser textured surfaces: a comprehensive review. Surf Interfaces 21:100802

    Article  CAS  Google Scholar 

  74. Vorobyev AY, Guo C (2013) Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7:385–407

    Article  CAS  Google Scholar 

  75. Volpe A, Gaudiuso C, Di Venere L, Licciulli F, Giordano F, Ancona A (2020) Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties. Coatings 10:587

    Article  CAS  Google Scholar 

  76. Zheng J, Qu G, Yang B, Wang H, Zhou L, Zhou Z (2022) Facile preparation of robust superhydrophobic ceramic surfaces with mechanical stability, durability, and self-cleaning function. Appl Surf Sci 576:151875

    Article  CAS  Google Scholar 

  77. Zhao X, Xue Y, Yang H, Xue W, Li F, He A, Cao Y (2020) Drag reduction effect of ultraviolet laser-fabricated superhydrophobic surface. Surf Eng 36:1307–1314

    Article  CAS  Google Scholar 

  78. Tian G, Zhang Y, Feng X, Hu Y (2022) Focus on bioinspired textured surfaces toward fluid drag reduction: recent progresses and challenges. Adv Eng Mater 24:2100696

    Article  CAS  Google Scholar 

  79. Rong W, Zhang H, Zhang T, Mao Z, Liu X, Song K (2021) Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro/nanostructured arrays. Adv Eng Mater 23:2000821

    Article  CAS  Google Scholar 

  80. Zheng Z, Yang H, Cao Y, Dai Z (2019) Laser-induced wettability gradient surface of the aluminum matrix used for directional transportation and collection of underwater bubbles. ACS Omega 5:718–725

    Article  Google Scholar 

  81. Yang X, Zhuang K, Lu Y, Wang X (2020) Creation of topological ultraslippery surfaces for droplet motion control. ACS Nano 15:2589–2599

    Article  CAS  Google Scholar 

  82. Yang X, Li Y, Zheng H, Lu Y (2022) Saturated surface charging on micro/nanoporous polytetrafluoroethylene for droplet manipulation. ACS Appl Nano Mater 5:3342–3351

    Article  CAS  Google Scholar 

  83. Zhu M, Liu Y, Chen M, Xu Z, Li L, Zhou Y (2021) Metal mesh-based special wettability materials for oil-water separation: A review of the recent development. J Pet Sci Eng 205:108889

    Article  CAS  Google Scholar 

  84. Liu Y, Han D, Jiao Z, Liu Y, Jiang H, Wu X, Ding H, Zhang Y, Sun H (2017) Laser-structured Janus wire mesh for efficient oil–water separation. Nanoscale 9:17933–17938

    Article  CAS  Google Scholar 

  85. Yin K, Chu D, Dong X, Wang C, Duan J, He J (2017) Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil–water separation. Nanoscale 9:14229–14235

    Article  CAS  Google Scholar 

  86. Volpe A, Gaudiuso C, Ancona A (2020) Laser fabrication of anti-icing surfaces: A review. Mater Lett 13:5692

    CAS  Google Scholar 

  87. Shen X, Yang L, Fan S, Yang Q, Wu W, Zhang B (2020) Colorful and superhydrophobic titanium surfaces textured by obliquely incident femtosecond laser induced micro/nano structures. Opt Commun 466:125687

    Article  CAS  Google Scholar 

  88. Ma Q, Tong Z, Wang W, Dong G (2018) Fabricating robust and repairable superhydrophobic surface on carbon steel by nanosecond laser texturing for corrosion protection. Appl Surf Sci 455:748–757

    Article  CAS  Google Scholar 

  89. Zheng H, Chang S, Ma G, Wang S (2020) Anti-icing performance of superhydrophobic surface fabricated by femtosecond laser composited dual-layers coating. Energy 223:110175

    Google Scholar 

  90. Pan R, Zhang H, Zhong M (2020) Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication. ACS Appl Mater Interfaces 13:1743–1753

    Article  Google Scholar 

  91. Zhao W, Xiao L, He X, Cui Z, Fang J, Zhang C, Li X, Li G, Zhong L, Zhang Y (2021) Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing. Opt Laser Technol 141:107115

    Article  CAS  Google Scholar 

  92. Li X, Jiang Y, Jiang Z, Li Y, Wen C, Zhang D, Lian J, Zhang Z (2021) Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment. Corros Sci 180:109186

    Article  CAS  Google Scholar 

  93. Sun K, Yang H, Xue W, He A, Zhu D, Liu W, Adeyemi K, Cao Y (2018) Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel. Appl Surf Sci 436:263–267

    Article  CAS  Google Scholar 

  94. Long J, Fan P, Zhong M, Zhang H, Xie Y, Lin C (2014) Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci 311:461–467

    Article  CAS  Google Scholar 

  95. Vatsya S, Virk KS (2003) Solution of two-temperature thermal diffusion model of laser–metal interactions. J Laser Appl 15:273–278

    Article  CAS  Google Scholar 

  96. Qiu T, Tien C (1993) Heat transfer mechanisms during short-pulse laser heating of metals. J Heat Transfer 115:835–841

    Article  CAS  Google Scholar 

  97. Chen J, Beraun J (2001) Numerical study of ultrashort laser pulse interactions with metal films. Numer Heat Tr A-Appl 40:1–20

    Article  CAS  Google Scholar 

  98. De Zanet A, Casalegno V, Salvo M (2021) Laser surface texturing of ceramics and ceramic composite materials—a review. Ceram Int 47:7307–7320

    Article  Google Scholar 

  99. Zheng B, Zhao G, Yan Z, Xie Y, Lin J (2022) Direct freeform laser fabrication of 3D conformable electronics. Adv Funct Mater 33:2210084

    Article  Google Scholar 

  100. Weng R, Zhang H, Tuo Y, Wang Y, Liu X (2017) Superhydrophobic drag-reduction spherical bearing fabricated by laser ablation and PEI regulated ZnO nanowire growth. Sci Rep 7:1–9

    Article  Google Scholar 

  101. Gamaly EG, Rode AV (2013) Physics of ultra-short laser interaction with matter: from phonon excitation to ultimate transformations. Prog quantum electron 37:215–323

    Article  Google Scholar 

  102. Yang Z, Tian Y, Yang C, Wang F, Liu X (2017) Modification of wetting property of inconel 718 surface by nanosecond laser texturing. Appl Surf Sci 414:313–324

    Article  CAS  Google Scholar 

  103. Boinovich LB, Modin EB, Sayfutdinova AR, Emelyanenko KA, Vasiliev AL, Emelyanenko AM (2017) Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties. ACS Nano 11:10113–10123

    Article  CAS  Google Scholar 

  104. Tong W, Xiong D (2022) Direct laser texturing technique for metal surfaces to achieve superhydrophobicity. Mater Today Phys 23:100651

    Article  Google Scholar 

  105. Jing X, Xia Y, Chen F, Yang C, Yang Z, Jaffery SHIJ (2022) Preparation of superhydrophobic glass surface with high adhesion. J Colloids Surf A 633:127861

    Article  CAS  Google Scholar 

  106. Zhou M, Yang H, Li B, Dai J, Di J, Zhao E, Cai L (2009) Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser. Appl Phys A 94:571–576

    Article  CAS  Google Scholar 

  107. Lin Y, Han J, Cai M, Liu W, Luo X, Zhang H, Zhang M (2018) Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J Mater Chem A 6:9049–9056

    Article  CAS  Google Scholar 

  108. Wahab JA, Ghazali M, Yusoff W, Sajuri Z, Shamsudin S (2015) Superhydrophobicity of textured ceramic coating for corrosion protection in marine applications-a brief review. Appl Mech Mater 815:116–120

    Article  Google Scholar 

  109. Zhu Z, Wu J, Wu Z, Wu T, He Y, Yin K (2021) Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. J Cent South Univ 28:3882–3906

    Article  CAS  Google Scholar 

  110. Usman J, Othman MHD, Ismail AF, Rahman MA, Jaafar J, Raji YO, Gbadamosi AO, Badawy THE, Said KAM (2021) An overview of superhydrophobic ceramic membrane surface modification for oil-water separation. J Mater Res Technol 12:643–667

    Article  CAS  Google Scholar 

  111. Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8:10070–10087

    Article  CAS  Google Scholar 

  112. Yong J, Yang Q, Chen F, Zhang D, Farooq U, Du G, Hou X (2014) A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A 2:5499–5507

    Article  CAS  Google Scholar 

  113. Lu L, Yao W, Xie Y, Li K, Wan Z (2021) Study on the wettability of biomimetic stainless-steel surfaces inspired by Bauhinia Linn. leaf. Surf Coat Technol 405:126721

    Article  CAS  Google Scholar 

  114. Vorobyev AY, Guo C (2015) Multifunctional surfaces produced by femtosecond laser pulses. J Appl Phys 117:137–171

    Article  Google Scholar 

  115. Wang Y, Zhang Z, Xu J, Yu H (2021) One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface. Surf Coat Technol 409:126801

    Article  CAS  Google Scholar 

  116. Shi Y, Jiang Z, Cao J, Ehmann KF (2020) Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining. Appl Surf Sci 500:144286

    Article  CAS  Google Scholar 

  117. Tabie VM, Koranteng MO, Yunus A, Kuuyine F (2019) Water-jet guided laser cutting technology-an overview. Lasers Manuf Mater Process 6:189–203

    Article  Google Scholar 

  118. Zhang Z, Gu Q, Jiang W, Zhu H, Xu K, Ren Y, Chi Xu (2019) Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface. Surf Coat Technol 363:170–178

    Article  CAS  Google Scholar 

  119. Song J, Pan W, Wang K, Chen F, Sun Y (2020) Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition. Int J Mach Tools Manuf 159:103637

    Article  Google Scholar 

  120. Long J, Zhou P, Huang Y, Xie X (2020) Enhancing the long-term robustness of dropwise condensation on nanostructured superhydrophobic surfaces by introducing 3D conical microtextures prepared by femtosecond laser. Adv Mater Interfaces 7:2000997

    Article  Google Scholar 

  121. Zhu Y, Feng A, Zhang C, Pan X, Yu J, Zhao P (2022) Research on preparation and water collection characteristics of bionic pattern surface for multi-order combination-multi-segment transport. Opt Laser Technol 156:108482

    Article  Google Scholar 

  122. Yang C, Wang M, Yang Z, Zhang D, Tian Y, Jing X, Liu X (2019) Investigation of effects of acid, alkali, and salt solutions on fluorinated superhydrophobic surfaces. Langmuir 35:17027–17036

    Article  CAS  Google Scholar 

  123. Hauschwitz P, Jagdheesh R, Alamri S, Rostohar D, Kunze T, Brajer J, Kopeček J, Mocek T (2020) Fabrication of functional superhydrophobic surfaces on carbon fibre reinforced plastics by IR and UV direct laser interference patterning. Appl Surf Sci 508:144817

    Article  CAS  Google Scholar 

  124. Menon DMN, Giardino M, Janner D (2023) Tunable pulsewidth nanosecond laser texturing: from environment friendly superhydrophobic to superamphiphobic surfaces. Appl Surf Sci 610:155356

    Article  Google Scholar 

  125. Ngo CV, Chun DM (2018) Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing. Appl Surf Sci 435:974–982

    Article  CAS  Google Scholar 

  126. Hauschwitz P, Jagdheesh R, Rostohar D, Brajer J, Kopeček J, Jiřícek P, HoudkováJ MT (2020) Hydrophilic to ultrahydrophobic transition of Al 7075 by affordable ns fiber laser and vacuum processing. Appl Surf Sci 505:144523

    Article  CAS  Google Scholar 

  127. Khan SA, Boltaev GS, Iqbal M, Kim V, Ganeev RA, Alnaser AS (2021) Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces. Appl Surf Sci 542:148560

    Article  CAS  Google Scholar 

  128. Huang W, Nelson B, Tian S, Ordikhani-Seyedlar R, Auyeung RCY, Samanta A, Hu H, Shaw S, Lamuta C, Ding H (2022) Superhydrophobic surface processing for metal 3D printed parts. Appl Mater Today 29:101630

    Article  Google Scholar 

  129. Ma N, Cheng D, Zhang J, Zhao S, Lu Y (2020) A simple, inexpensive and environmental-friendly electrochemical etching method to fabricate superhydrophobic GH4169 surfaces. Surf Coat Technol 399:126180

    Article  CAS  Google Scholar 

  130. Yang S, Xu K, Zhang Z, Wu Y, Dai X, Zhu H, Wang Y (2021) Effect of laser energy on surface quality and properties of electrodeposited nickel-cobalt-tungsten (Ni–Co–W) coating. J Electrochem Soc 168:103503

    Article  CAS  Google Scholar 

  131. Jia C, Zhu J, Zhang L (2022) Study on preparation of superhydrophobic copper surface by milling and its protective performance. Materials 15:1939

    Article  CAS  Google Scholar 

  132. Lv J, Luo K, Lu H, Wang Z, Liu J, Lu J (2022) Achieving high strength and ductility in selective laser melting Ti-6Al-4V alloy by laser shock peening. J Alloys Compd 899:163335

    Article  CAS  Google Scholar 

  133. Liu W, Fan P, Cai M, Luo X, Chen C, Pan R, Zhang H, Zhong M (2019) An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection. Nanoscale 11:8940–8949

    Article  CAS  Google Scholar 

  134. Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. Rsc Adv 3:671–690

    Article  CAS  Google Scholar 

  135. Dalawai SP, Aly MAS, Latthe SS, Xing R, Sutar RS, Nagappan S, Ha CS, Sadasivuni KK, Liu S (2020) Recent advances in durability of superhydrophobic self-cleaning technology: a critical review. Prog Org Coat 138:105381

    Article  CAS  Google Scholar 

  136. Zhang Y, Xia H, Kim E, Sun H (2012) Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 8:11217–11231

    Article  CAS  Google Scholar 

  137. Ma Q, Wang W, Dong G (2019) Facile fabrication of biomimetic liquid-infused slippery surface on carbon steel and its self-cleaning, anti-corrosion, anti-frosting and tribological properties. J Colloids Surf A 577:17–26

    Article  CAS  Google Scholar 

  138. Milles S, Soldera M, Kuntze T, Lasagni AF (2020) Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning. Appl Surf Sci 525:146518

    Article  CAS  Google Scholar 

  139. He X, Li G, Zhang Y, Lai X, Zhou M, Xiao L, Tang X, Hu Y, Liu H, Yang Y (2021) Bioinspired functional glass integrated with multiplex repellency ability from laser-patterned hexagonal texturing. Chem Eng J 416:129113

    Article  CAS  Google Scholar 

  140. Wu J, He J, Yin K, Zhu Z, Xiao S, Wu Z, Duan J (2021) Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling. Nano Lett 21:4209–4216

    Article  CAS  Google Scholar 

  141. Tuo Y, Zhang H, Rong W, Jiang S, Chen W, Liu X (2019) Drag reduction of anisotropic superhydrophobic surfaces prepared by laser etching. Langmuir 35:11016–11022

    Article  CAS  Google Scholar 

  142. Rong W, Zhang H, Mao Z, Chen L, Liu X (2021) Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation. J Colloids Surf A 622:126712

    Article  CAS  Google Scholar 

  143. Rong W, Zhang H, Mao Z, Chen L, Liu X (2022) Improved stable drag reduction of controllable laser-patterned superwetting surfaces containing bioinspired micro/nanostructured arrays. ACS Omega 7:2049–2063

    Article  CAS  Google Scholar 

  144. Lou D, Li T, Liang E, Lu G, Yang S, Cheng J, Yang Q, Tao Q, Liu D (2021) Superhydrophobic/superhydrophilic hybrid copper surface enhanced micro heat pipe by using laser selective texturing. ECS J Solid State Sci Technol 10:113005

    Article  CAS  Google Scholar 

  145. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34

    Article  CAS  Google Scholar 

  146. Zhai L, Berg MC, Cebeci FC, Kim Y, Milwid JM, Rubner MF, Cohen RE (2006) Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Lett 6:1213–1217

    Article  CAS  Google Scholar 

  147. Wang M, Liu Q, Zhang H, Wang C, Wang L, Xiang B, Fan Y, Guo C, Ruan S (2017) Laser direct writing of tree-shaped hierarchical cones on a superhydrophobic film for high-efficiency water collection. ACS Appl Mater Interfaces 9:29248–29254

    Article  CAS  Google Scholar 

  148. Yin K, Wang L, Deng Q, Huang Q, Jiang J, Li G, He J (2022) Femtosecond laser thermal accumulation-triggered micro-/nanostructures with patternable and controllable wettability towards liquid manipulating. Nanomicro Lett 14:97

    CAS  Google Scholar 

  149. Ji J, Jiao Y, Song Q, Zhang Y, Liu X, Liu K (2021) Bioinspired geometry-gradient metal slippery surface by one-step laser ablation for continuous liquid directional self-transport. Langmuir 37:5436–5444

    Article  CAS  Google Scholar 

  150. Yang C, Yang K, Li M, Chen F, Yang Z (2022) The investigation of droplet directional self-transport ability on the slippery liquid-infused surface with anisotropic structure. Prog Org Coat 168:106857

    Article  CAS  Google Scholar 

  151. Jiao Y, Lv X, Zhang Y, Li C, Li J, Wu H, Xiao Y, Wu S, Hu Y, Wu D (2019) Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture. Nanoscale 11:1370–1378

    Article  CAS  Google Scholar 

  152. Wang B, Liang W, Guo Z, Liu W (2015) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44:336–361

    Article  Google Scholar 

  153. Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025–16058

    Article  CAS  Google Scholar 

  154. Zhu Q, Pan Q, Liu F (2011) Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J Phys Chem C 115:17464–17470

    Article  CAS  Google Scholar 

  155. Xin G, Wu C, Liu W, Wang M, Huang Y, Rong Y (2021) Fabrication of super-wetting copper foam based on laser ablation for selective and efficient oil-water separation. Surf Coat Technol 424:127650

    Article  CAS  Google Scholar 

  156. Han Y, Han Y, Huang Y, Wang C, Liu H, Han L, Zhang Y (2022) Laser-induced graphene superhydrophobic surface transition from pinning to rolling for multiple applications. Small Methods 6:2200096

    Article  CAS  Google Scholar 

  157. Golovin K, Dhyani A, Thouless M, Tuteja A (2019) Low-interfacial toughness materials for effective large-scale deicing. Science 364:371–375

    Article  CAS  Google Scholar 

  158. Jiang S, Diao Y, Yang H (2022) Recent advances of bio-inspired anti-icing surfaces. Adv Colloid Interface Sci 308:102756

    Article  CAS  Google Scholar 

  159. Liao D, He M, Qiu H (2019) High-performance icephobic droplet rebound surface with nanoscale doubly reentrant structure. Int J Heat Mass Transf 133:341–351

    Article  Google Scholar 

  160. Hou Y, Yu M, Shang Y, Zhou P, Song R, Xu X, Chen X, Wang Z, Yao S (2018) Suppressing ice nucleation of supercooled condensate with biphilic topography. Phys Rev Lett 120:075902

    Article  CAS  Google Scholar 

  161. Liu Y, Li X, Jin J, Liu J, Yan Y, Han Z, Ren L (2017) Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model. Appl Surf Sci 400:498–505

    Article  CAS  Google Scholar 

  162. Wang H, He M, Liu H, Guan Y (2019) One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function. ACS Appl Mater Interfaces 11:25586–25594

    Article  CAS  Google Scholar 

  163. Xu K, Shen W, Yang S, Wu Y, Zhao D, Leng Z, Tang Y, Zhu H, Liu S, Zhang Z (2023) Laser-enhanced electrodeposition preparation technology of superhydrophobic micro-nano structure coating. J Colloids Surf A 657:130507

    Article  CAS  Google Scholar 

  164. Wang L, Tian Z, Jiang G, Luo X, Chen C, Hu X, Zhang H, Zhong M (2022) Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat Commun 13:1–15

    Google Scholar 

  165. Wang L, Li J, Chen Z, Song Z, Meng X, Chen X (2022) Porous graphene-based photothermal superhydrophobic surface for robust anti-icing and efficient De-icing. Adv Mater Interfaces 9:2201758

    Article  CAS  Google Scholar 

  166. Xiang T, Han Y, Guo Z, Wang R, Zheng S, Li S, Cheng Li, Dai X (2018) Fabrication of inherent anticorrosion superhydrophobic surfaces on metals. ACS Sustain Chem Eng 6:5598–5606

    Article  CAS  Google Scholar 

  167. Wang H, Zhuang J, Qi H, Yu J, Guo Z, Ma Y (2020) Laser-chemical treated superhydrophobic surface as a barrier to marine atmospheric corrosion. Surf Coat Technol 401:126255

    Article  CAS  Google Scholar 

  168. Li X, Jiang Y, Tan X, Zhang Z, Jiang Z, Lian J, Wen C, Ren L (2022) Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability. Appl Surf Sci 575:151596

    Article  CAS  Google Scholar 

  169. Zhang L, Sun L, Zhang Z, Wang Y, Yang Z, Liu C, Li Z, Zhao Y (2020) Bioinspired superhydrophobic surface by hierarchically colloidal assembling of microparticles and colloidal nanoparticles. Chem Eng J 394:125008

    Article  CAS  Google Scholar 

  170. Pan Q, Cao Y, Xue W, Zhu D, Liu W (2019) Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property. Langmuir 35:11414–11421

    Article  CAS  Google Scholar 

  171. Jalil SA, Akram M, Bhat JA, Hayes JJ, Singh SC, ElKabbash M, Guo C (2020) Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses. Appl Surf Sci 506:144952

    Article  CAS  Google Scholar 

  172. Li S, Liu Y, Zheng Z, Liu X, Huang H, Han Z, Ren L (2019) Biomimetic robust superhydrophobic stainless-steel surfaces with antimicrobial activity and molecular dynamics simulation. Chem Eng J 372:852–861

    Article  CAS  Google Scholar 

  173. Lee Y, Chung Y, Park J, Park K, Seo Y, Hong S, Lee SH, Jeao H, Seo J (2020) Lubricant-infused directly engraved nano-microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties. Sci Rep 10:17454

    Article  CAS  Google Scholar 

  174. Li K, Xie Y, Tang B, Yu M, Ding H, Li C, Lu L (2022) Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface. Appl Phys Lett 121:113701

    Article  CAS  Google Scholar 

  175. Zhang J, Li G, Li D, Zhang X, Li Q, Liu Z (2021) In vivo blood-repellent performance of a controllable facile-generated superhydrophobic surface. ACS Appl Mater Interfaces 13:29021–29033

    Article  CAS  Google Scholar 

  176. Xin G, Wu C, Cao H, Liu W, Li B, Huang Y, Rong Y, Zhang G (2020) Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance. Surf Coat Technol 391:125707

    Article  CAS  Google Scholar 

  177. Wang W, Lu L, Lu X, Liang Z, Tang B, Xie Y (2022) Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf. Bio-Des Manuf 5:700–713

    Article  CAS  Google Scholar 

  178. Zouaghi S, Six T, Bellayer S, Moradi S, Hatzikiriakos SG, Dargent T, Thomy V, Coffinier Y, André C, Jimenez M (2017) Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing. ACS Appl Mater Interfaces 9:26565–26573

    Article  CAS  Google Scholar 

  179. Jiang H, Zhang Y, Han D, Xia H, Feng J, Chen Q, Hong Z, Sun H (2014) Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv Funct Mater 24:4595–4602

    Article  CAS  Google Scholar 

  180. Ding K, Wang C, Li S, Zhang X, Lin N, Ja D (2022) Single-Step femtosecond laser structuring of multifunctional colorful metal surface and its origin. Surf Interfaces 34:102386

    Article  CAS  Google Scholar 

  181. Gong D, Long J, Jiang D, Fan P, Zhang H, Li L, Zhong M (2016) Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template. ACS Appl Mater Interfaces 8:17511–17518

    Article  CAS  Google Scholar 

  182. Chu D, Yao P, Huang C (2021) Anti-reflection silicon with self-cleaning processed by femtosecond laser. Opt Laser Technol 136:106790

    Article  CAS  Google Scholar 

  183. Li J, Xu J, Lian Z, Yu Z, Yu H (2020) Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nanosecond laser irradiation. Opt Laser Technol 126:106129

    Article  CAS  Google Scholar 

  184. Pan R, Cai M, Liu W, Luo X, Chen C, Zhang H, Zhong M (2019) Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro–nano structures. J Mate Chem A7:18050–18062

    Article  Google Scholar 

  185. Fan P, Pan R, Zhong M (2019) Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced cassie-baxter stability and durability. Langmuir 35:16693–16711

    Article  CAS  Google Scholar 

  186. Long J, Pan L, Fan P, Gong D, Jiang D, Zhang H, Li L, Zhong M (2016) Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser. Langmuir 32:1065–1072

    Article  CAS  Google Scholar 

  187. Whyman G, Bormashenko E (2011) How to make the Cassie wetting state stable? Langmuir 27:8171–8176

    Article  CAS  Google Scholar 

  188. Yu Z, Zhan B, Dong L, Jiang W, Song Y, Hu S (2019) Self-healing structured graphene surface with reversible wettability for oil-water separation. ACS Appl Nano Mater 2:1505–1515

    Article  CAS  Google Scholar 

  189. Karkantonis T, Gaddam A, Sharma H, Cummins G, See TL, Dimov S (2022) Laser-enabled surface treatment of disposable endoscope lens with superior antifouling and optical properties. Langmuir 38:11392–11405

    Article  CAS  Google Scholar 

  190. Wang M, Yang Z, Yang C, Zhang D, Tian Y, Liu X (2020) The investigation of mechanical and thermal properties of super-hydrophobic nitinol surfaces fabricated by hybrid methods of laser irradiation and carbon ion implantation. Appl Surf Sci 527:146889

    Article  CAS  Google Scholar 

  191. Kobina Sam E, Kobina Sam D, Lv X, Liu B, Xiao X, Gong S, Yu W, Chen J, Liu J (2019) Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem Eng J 373:531–546

    Article  CAS  Google Scholar 

  192. Dong Z, Schumann MF, Hokkanen MJ, Chang B, Welle A, Zhou Q, Ras RHA, Xu Z, Wegener M, Levkin PA (2018) Superoleophobic slippery Lubricant - Infused surfaces: Combining two extremes in the same surface. Adv Mater 30:1803890

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20210755), Postdoctoral Science Foundation of China (No. 2022M710061), National Natural Science Foundation of China (Nos. 52205468, 52075227, 52105449 and 51905226), Natural Science Foundation of Zhejiang Province (No. LD22E050001), Natural Science Research of Jiangsu Higher Education Institutions of China (No. 21KJB460014), and Science and Technology Innovation Major Project of Wenzhou (No. ZG2022007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyang Zhang or Jinzhong Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Approval was granted to carry out experiments involving human tissue by and institutional review board or equivalent ethics committee.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, M., Zhang, Z. et al. A review on applications of functional superhydrophobic surfaces prepared by laser biomimetic manufacturing. J Mater Sci 58, 3421–3459 (2023). https://doi.org/10.1007/s10853-023-08217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08217-9

Navigation