Skip to main content

Advertisement

Log in

Enhanced mechanical properties of melamine-functionalized boron nitride nanosheets reinforced with epoxy nanocomposites for dental applications

  • Innovation in Materials Processing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-covalently functionalized boron nitride nanoplatelets (BNNPs) were mixed with the epoxy resin and fabricated into nanocomposites. The BNNPs were non-covalently functionalized with melamine to enhance dispersion and matrix interfacial bond strength with the matrix. Melamine-functionalized BNNPs (M-BNNPs) were simultaneously synthesized and functionalized via modified mechanical exfoliation process. The mechanical properties of M-BNNP-reinforced epoxy (M-BNNP/epoxy) nanocomposites included marked strengthening effects (84.3% in terms of Young’s modulus, 29.1% in terms of universal test strength, and 134% in terms of fracture toughness) after adding only 2 wt% M-BNNPs to the epoxy matrix. The experimental Young’s modulus were compared to those of the Halpin–Tsai model. Our materials exhibited much great fracture toughness than commercial dental resins, suggesting that the M-BNN/epoxy resins may find dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Falin A, Cai Q, Santos EJG, Scullion D, Qian D, Zhang R et al (2017) Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun 8:15815. https://doi.org/10.1038/ncomms15815

    Article  Google Scholar 

  2. Guo Y, Lyu Z, Yang X, Lu Y, Ruan K, Wu Y et al (2019) Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos B Eng 164:732–739. https://doi.org/10.1016/j.compositesb.2019.01.099

    Article  CAS  Google Scholar 

  3. Guerra V, Wan C, McNally T (2019) Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog Mater Sci 100:170–186. https://doi.org/10.1016/j.pmatsci.2018.10.002

    Article  CAS  Google Scholar 

  4. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993. https://doi.org/10.1021/nn1006495

    Article  CAS  Google Scholar 

  5. Zeng X, Yao Y, Gong Z, Wang F, Sun R, Xu J et al (2015) Ice-Templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11:6205–6213. https://doi.org/10.1002/smll.201502173

    Article  CAS  Google Scholar 

  6. Kuang Z, Chen Y, Lu Y, Liu L, Hu S, Wen S et al (2015) Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small 11:1655–1659. https://doi.org/10.1002/smll.201402569

    Article  CAS  Google Scholar 

  7. Yu J, Mo H, Jiang P (2015) Polymer/boron nitride nanosheet composite with high thermal conductivity and sufficient dielectric strength. Polym Adv Technol 26:514–520. https://doi.org/10.1002/pat.3481

    Article  CAS  Google Scholar 

  8. Mortazavi B, Rémond Y (2012) Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys E Low Dimens Syst Nanostruct 44:1846–1852. https://doi.org/10.1016/j.physe.2012.05.007

    Article  CAS  Google Scholar 

  9. Sun J, Yao Y, Zeng X, Pan G, Hu J, Huang Y et al (2017) Preparation of boron nitride nanosheet/nanofibrillated cellulose nanocomposites with ultrahigh thermal conductivity via engineering interfacial thermal resistance. Adv Mater Interfaces 4:1700563. https://doi.org/10.1002/admi.201700563

    Article  CAS  Google Scholar 

  10. Hou X, Wang M, Fu L, Chen Y, Jiang N, Lin C-T et al (2018) Boron nitride nanosheet nanofluids for enhanced thermal conductivity. Nanoscale 10:13004–13010. https://doi.org/10.1039/C8NR00651B

    Article  CAS  Google Scholar 

  11. Wang M, Jiao Z, Chen Y, Hou X, Fu L, Wu Y et al (2018) Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Compos Pt A Appl Sci Manuf 109:321–329. https://doi.org/10.1016/j.compositesa.2018.03.023

    Article  CAS  Google Scholar 

  12. Wang T, Wang M, Fu L, Duan Z, Chen Y, Hou X et al (2018) Enhanced thermal conductivity of polyimide composites with boron nitride nanosheets. Sci Rep 8:1557. https://doi.org/10.1038/s41598-018-19945-3

    Article  CAS  Google Scholar 

  13. Yu C, Zhang J, Li Z, Tian W, Wang L, Luo J et al (2017) Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos Pt A-Appl Sci Manuf 98:25–31. https://doi.org/10.1016/j.compositesa.2017.03.012

    Article  CAS  Google Scholar 

  14. Weng Q, Kvashnin DG, Wang X, Cretu O, Yang Y, Zhou M et al (2017) Tuning of the optical, electronic, and magnetic properties of boron nitride nanosheets with oxygen doping and functionalization. Adv Mater 29:1700695. https://doi.org/10.1002/adma.201700695

    Article  CAS  Google Scholar 

  15. Krečmarová M, Canet-Albiach R, Pashaei-Adl H, Gorji S, Muñoz-Matutano G, Nesládek M et al (2021) Extrinsic effects on the optical properties of surface color defects generated in hexagonal boron nitride nanosheets. ACS Appl Mater Interfaces 13:46105–46116. https://doi.org/10.1021/acsami.1c11060

    Article  CAS  Google Scholar 

  16. Zhao G, Zhang F, Wu Y, Hao X, Wang Z, Xu X (2016) One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance. Adv Opt Mater 4:141–146. https://doi.org/10.1002/adom.201500415

    Article  CAS  Google Scholar 

  17. Kumbhakar P, Kole AK, Tiwary CS, Biswas S, Vinod S, Taha-Tijerina J et al (2015) Nonlinear Optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets. Adv Opt Mater 3:828–835. https://doi.org/10.1002/adom.201400445

    Article  CAS  Google Scholar 

  18. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21:2889–2893. https://doi.org/10.1002/adma.200900323

    Article  CAS  Google Scholar 

  19. Cui X, Ding P, Zhuang N, Shi L, Song N, Tang S (2015) Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl Mater Interfaces 7:19068–19075. https://doi.org/10.1021/acsami.5b04444

    Article  CAS  Google Scholar 

  20. Yoo SC, Kim J, Lee W, Hwang JY, Ryu HJ, Hong SH (2020) Enhanced mechanical properties of boron nitride nanosheet/copper nanocomposites via a molecular-level mixing process. Compos B Eng 195:108088. https://doi.org/10.1016/j.compositesb.2020.108088

    Article  CAS  Google Scholar 

  21. Sun G, Bi J, Wang W, Zhang J (2017) Microstructure and mechanical properties of boron nitride nanosheets-reinforced fused silica composites. J Eur Ceram Soc 37:3195–3202. https://doi.org/10.1016/j.jeurceramsoc.2017.03.029

    Article  CAS  Google Scholar 

  22. Yan H, Tang Y, Su J, Yang X (2014) Enhanced thermal–mechanical properties of polymer composites with hybrid boron nitride nanofillers. Appl Phys A 114:331–337. https://doi.org/10.1007/s00339-013-8149-6

    Article  CAS  Google Scholar 

  23. Khan U, May P, O’Neill A, Bell AP, Boussac E, Martin A et al (2013) Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. Nanoscale 5:581–587. https://doi.org/10.1039/C2NR33049K

    Article  CAS  Google Scholar 

  24. Kim S, Ahn Y, Song SH, Lee D (2022) Tungsten nanoparticle anchoring on boron nitride nanosheet-based polymer nanocomposites for complex radiation shielding. Compos Sci Technol 221:109353. https://doi.org/10.1016/j.compscitech.2022.109353

    Article  CAS  Google Scholar 

  25. Quill TJ, Smith MK, Zhou T, Baioumy MGS, Berenguer JP, Cola BA et al (2018) Thermal and mechanical properties of 3D printed boron nitride – ABS composites. Appl Compos Mater 25:1205–1217. https://doi.org/10.1007/s10443-017-9661-1

    Article  CAS  Google Scholar 

  26. Lee D, Song SH, Hwang J, Jin SH, Park KH, Kim BH et al (2013) Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 9:2602–2610. https://doi.org/10.1002/smll.201203214

    Article  CAS  Google Scholar 

  27. Kokulnathan T, Almutairi G, Chen S-M, Chen T-W, Ahmed F, Arshi N et al (2021) Construction of lanthanum vanadate/functionalized boron nitride nanocomposite: the electrochemical sensor for monitoring of furazolidone. ACS Sustain Chem Eng 9:2784–2794. https://doi.org/10.1021/acssuschemeng.0c08340

    Article  CAS  Google Scholar 

  28. Pan D, Su F, Liu H, Ma Y, Das R, Hu Q et al (2020) The properties and preparation methods of different boron nitride nanostructures and applications of related nanocomposites. Chem Rec 20:1314–1337. https://doi.org/10.1002/tcr.202000079

    Article  CAS  Google Scholar 

  29. Joy J, George E, Haritha P, Thomas S, Anas S (2020) An overview of boron nitride based polymer nanocomposites. J Polym Sci 58:3115–3141. https://doi.org/10.1002/pol.20200507

    Article  CAS  Google Scholar 

  30. Pullanchiyodan A, S. Nair K, Surendran KP. (2017) Silver-decorated boron nitride nanosheets as an effective hybrid filler in pmma for high-thermal-conductivity electronic substrates. ACS Omega 2:8825–8835. https://doi.org/10.1021/acsomega.7b01436

    Article  CAS  Google Scholar 

  31. Liu F, Li Q, Li Z, Liu Y, Dong L, Xiong C et al (2017) Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Compos Sci Technol 142:139–144. https://doi.org/10.1016/j.compscitech.2017.02.006

    Article  CAS  Google Scholar 

  32. Unlu BA, Karatay A, Yildiz EA, Yola ML, Yuksek M, Atar N et al (2021) Defect assisted optical limiting performance of hexagonal boron nitride nanosheets in aqueous suspension and PMMA nanocomposite films. Opt Mater 121:111630. https://doi.org/10.1016/j.optmat.2021.111630

    Article  CAS  Google Scholar 

  33. Li M, An H, Kim TW (2021) Highly flexible and stable memristive devices based on hexagonal boron-nitride nanosheets: Polymethyl methacrylate nanocomposites. Org Electron 99:106322. https://doi.org/10.1016/j.orgel.2021.106322

    Article  CAS  Google Scholar 

  34. Oh H, Kim J (2019) Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity. Compos Sci Technol 172:153–162. https://doi.org/10.1016/j.compscitech.2019.01.021

    Article  CAS  Google Scholar 

  35. Pan D, Zhang X, Yang G, Shang Y, Su F, Hu Q et al (2020) Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets. Ind Eng Chem Res 59:20371–20381. https://doi.org/10.1021/acs.iecr.0c04510

    Article  CAS  Google Scholar 

  36. Su J, Xiao Y, Ren M. (2013) Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets. phys status solidi A 210:2699–705. Doi: https://doi.org/10.1002/pssa.201330213

  37. Lin Z, McNamara A, Liu Y, Moon K-s, Wong C-P (2014) Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos Sci Technol 90:123–128. https://doi.org/10.1016/j.compscitech.2013.10.018

    Article  CAS  Google Scholar 

  38. Chen J, Chen B, Li J, Tong X, Zhao H, Wang L (2017) Enhancement of mechanical and wear resistance performance in hexagonal boron nitride-reinforced epoxy nanocomposites. Polym Int 66:659–664. https://doi.org/10.1002/pi.5296

    Article  CAS  Google Scholar 

  39. Owais M, Zhao J, Imani A, Wang G, Zhang H, Zhang Z (2019) Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos Pt A Appl Sci Manuf 117:11–22. https://doi.org/10.1016/j.compositesa.2018.11.006

    Article  CAS  Google Scholar 

  40. Yang X, Wang X, Wang W, Fu Y, Xie Q (2020) Atomic-scale insights into interface thermal resistance between epoxy and boron nitride in nanocomposites. Int J Heat Mass Transf 159:120105. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120105

    Article  CAS  Google Scholar 

  41. Zhao H, Ding J, Liu P, Yu H (2021) Boron nitride-epoxy inverse “nacre-like” nanocomposite coatings with superior anticorrosion performance. Corros Sci 183:109333. https://doi.org/10.1016/j.corsci.2021.109333

    Article  CAS  Google Scholar 

  42. Sun N, Sun J, Zeng X, Chen P, Qian J, Xia R et al (2018) Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity. Compos Pt A Appl Sci Manuf 110:45–52. https://doi.org/10.1016/j.compositesa.2018.04.010

    Article  CAS  Google Scholar 

  43. Jin X, Wang J, Dai L, Wang W, Wu H (2019) Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube. Compos Sci Technol 184:107862. https://doi.org/10.1016/j.compscitech.2019.107862

    Article  CAS  Google Scholar 

  44. Lago E, Toth PS, Gentiluomo S, Thorat SB, Pellegrini V, Bonaccorso F (2021) Dependence of the polycarbonate mechanical performances on boron nitride flakes morphology. J Phys-Mater 4:045002. https://doi.org/10.1088/2515-7639/ac0ac0

    Article  CAS  Google Scholar 

  45. Morishita T, Takahashi N (2017) Highly thermally conductive and electrically insulating polymer nanocomposites with boron nitride nanosheet/ionic liquid complexes. RSC Adv 7:36450–36459. https://doi.org/10.1039/C7RA06691K

    Article  CAS  Google Scholar 

  46. Lin S, Ashrafi B, Laqua K, Su Kim K, Simard B (2017) Covalent derivatization of boron nitride nanotubes with peroxides and their application in polycarbonate composites. New J Chem 41:7571–7577. https://doi.org/10.1039/C7NJ00193B

    Article  CAS  Google Scholar 

  47. Yang J, Xie H, Chen H, Shi Z, Wu T, Yang Q et al (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6:1403–1411. https://doi.org/10.1039/C7TA08188J

    Article  CAS  Google Scholar 

  48. Zeng X, Sun J, Yao Y, Sun R, Xu J-B, Wong C-P (2017) A Combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11:5167–5178. https://doi.org/10.1021/acsnano.7b02359

    Article  CAS  Google Scholar 

  49. Lee D, Lee B, Park KH, Ryu HJ, Jeon S, Hong SH (2015) Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett 15:1238–1244. https://doi.org/10.1021/nl504397h

    Article  CAS  Google Scholar 

  50. Cha J, Jun GH, Park JK, Kim JC, Ryu HJ, Hong SH (2017) Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Compos B Eng 129:169–179. https://doi.org/10.1016/j.compositesb.2017.07.070

    Article  CAS  Google Scholar 

  51. Deepika LLH, Glushenkov AM, Hait SK, Hodgson P, Chen Y (2014) High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci Rep 4:7288. https://doi.org/10.1038/srep07288

    Article  CAS  Google Scholar 

  52. Liu Y, Mateti S, Li C, Liu X, Glushenkov AM, Liu D et al (2018) Synthesis of composite nanosheets of graphene and boron nitride and their lubrication application in oil. Adv Eng Mater 20:1700488. https://doi.org/10.1002/adem.201700488

    Article  CAS  Google Scholar 

  53. Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L, Belle BD et al (2011) Hunting for monolayer boron nitride: optical and raman signatures. Small 7:465–468. https://doi.org/10.1002/smll.201001628

    Article  CAS  Google Scholar 

  54. Lee M-S, Park M, Kim H, Park S-J (2016) Effects of microporosity and surface chemistry on separation performances of N-containing pitch-based activated carbons for CO2/N2 binary mixture. Sci Rep 6:23224. https://doi.org/10.1038/srep23224

    Article  CAS  Google Scholar 

  55. Ederer J, Janoš P, Ecorchard P, Tolasz J, Štengl V, Beneš H et al (2017) Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Adv 7:12464–12473. https://doi.org/10.1039/C6RA28745J

    Article  CAS  Google Scholar 

  56. Lao J, Xie H, Shi Z, Li G, Li B, Hu G-H et al (2018) Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength. ACS Sustain Chem Eng 6:7151–7158. https://doi.org/10.1021/acssuschemeng.8b01219

    Article  CAS  Google Scholar 

  57. Tang Y-R, Lin D-W, Gao Y, Xu J, Guo B-H (2014) Prominent nucleating effect of finely dispersed hydroxyl-functional hexagonal boron nitride on biodegradable poly(butylene succinate). Ind Eng Chem Res 53:4689–4696. https://doi.org/10.1021/ie403915j

    Article  CAS  Google Scholar 

  58. Li X, Wang J, Chen H, Xiong C, Shi Z, Yang Q (2021) Flexible dielectric nanocomposite films based on chitin/boron nitride/copper calcium titanate with high energy density. Compos Pt A-Appl Sci Manuf 149:106554. https://doi.org/10.1016/j.compositesa.2021.106554

    Article  CAS  Google Scholar 

  59. Rosely CVS, Shaiju P, Gowd EB (2019) Poly(l-lactic acid)/Boron nitride nanocomposites: influence of boron nitride functionalization on the properties of poly(l-lactic acid). J Phys Chem B 123:8599–8609. https://doi.org/10.1021/acs.jpcb.9b07743

    Article  CAS  Google Scholar 

  60. Lin C-P, Douglas WH (1994) Failure mechanisms at the human dentin-resin interface: a fracture mechanics approach. J Biomech 27:1037–1047. https://doi.org/10.1016/0021-9290(94)90220-8

    Article  CAS  Google Scholar 

  61. Tam LE, Pilliar RM (1993) Fracture toughness of dentin/resin-composite adhesive interfaces. J Dent Res 72:953–959. https://doi.org/10.1177/00220345930720051801

    Article  CAS  Google Scholar 

  62. Zheng J, Xiao F, Qian L, Zhou ZR (2009) Erosion behavior of human tooth enamel in citric acid solution. Tribol Int TRIBOL INT 42:1558–1564. https://doi.org/10.1016/j.triboint.2008.12.008

    Article  CAS  Google Scholar 

  63. Lin CP, Douglas WH (1994) Structure-property relations and crack resistance at the bovine dentin-enamel junction. J Dent Res 73:1072–1078. https://doi.org/10.1177/00220345940730050901

    Article  CAS  Google Scholar 

  64. Tam LE, Noroozi A (2007) Effects of direct and indirect bleach on dentin fracture toughness. J Dent Res 86:1193–1197. https://doi.org/10.1177/154405910708601210

    Article  CAS  Google Scholar 

  65. Knobloch LA, Kerby RE, Seghi R, Berlin JS, Lee JS (2000) Fracture toughness of resin-based luting cements. J Prosthet Dent 83:204–209. https://doi.org/10.1016/S0022-3913(00)80013-X

    Article  CAS  Google Scholar 

  66. Lawn BR, Pajares A, Zhang Y, Deng Y, Polack MA, Lloyd IK et al (2004) Materials design in the performance of all-ceramic crowns. Biomaterials 25:2885–2892. https://doi.org/10.1016/j.biomaterials.2003.09.050

    Article  CAS  Google Scholar 

  67. Gao H, Ji B, Buehler M-J, Yao H (2004) Flaw tolerant bulk and surface nanostructures of biological systems. Mol Cell Biomech 1:37−52

  68. Üçtaşli S, WILSON HJ, ZAIMOGLU L. (1993) Variables affecting the fracture toughness of resin-based inlay/onlay systems. J Oral Rehabil 20:423–431. https://doi.org/10.1111/j.1365-2842.1993.tb01626.x

    Article  Google Scholar 

  69. Bapna MS, Mueller HJ (1993) Fracture toughness, diametrical strength, and fractography of amalgam and of amalgam to amalgam bonds. Dent Mater 9:51–56. https://doi.org/10.1016/0109-5641(93)90106-Z

    Article  CAS  Google Scholar 

  70. Lloyd CH, Butchart DGM (1990) The retention of core composites, glass ionomers, and cermets by a self-threading dentin pin: the influence of fracture toughness upon failure. Dent Mater 6:185–188. https://doi.org/10.1016/0109-5641(90)90027-C

    Article  CAS  Google Scholar 

  71. Watanabe H, Khera SC, Vargas MA, Qian F (2008) Fracture toughness comparison of six resin composites. Dent Mater 24:418–425. https://doi.org/10.1016/j.dental.2007.06.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korean (NRF) grant funded by the Korea government (Ministry of Science and ICT) (2021R1F1A1058854) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE, 20217510100020, Development of platform process using common core and materialization technology for rare metal recovery from industrial low-grade waste liquid).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongju Lee.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, S.C., Kim, J., Kim, S. et al. Enhanced mechanical properties of melamine-functionalized boron nitride nanosheets reinforced with epoxy nanocomposites for dental applications. J Mater Sci 57, 18205–18219 (2022). https://doi.org/10.1007/s10853-022-07702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07702-x

Navigation