Skip to main content
Log in

A dual cooling composite film by subtly combining phase change materials and thermally conductive fillers for efficient thermal management

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is a long-term bottleneck to reasonably balance heat conduction and heat absorption for cost-effective thermal management applications. In the current study, a dual cooling polylactic acid (PLA) composite film was fabricated by subtly coating phase change materials of polyethylene glycol (PEG) onto the surface of thermally conductive fillers of hexagonal boron nitride (h-BN) (PEG@BN), where the thermal conductivity was greatly improved by decreasing the interfacial thermal resistance and the thermal transition of PEG was accelerated without any leakage. The thermal conductivity of (PEG@BN)/PLA at a low h-BN loading of 15.0 wt% was as high as 3.94 W m−1 K−1, which was enhanced by 87.6% and 1131.3% relative to uncoated PEG/BN/PLA and pure PLA, respectively. Meanwhile, the latent heat of (PEG@BN)/PLA at a PEG content of 20.0 wt% was 12.1 J g−1, exhibiting stable thermal performance. These results provide a paradigmatic strategy to develop dual cooling materials for efficient thermal management.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wang Z-G, Gong F, Yu W-C et al (2018) Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites. Compos Sci Technol 162:7–13

    Article  CAS  Google Scholar 

  2. Wang F, Cai X (2019) Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers. J Mater Sci 54:3847–3862. https://doi.org/10.1007/s10853-018-3097-3

    Article  CAS  Google Scholar 

  3. Li Y-T, Liu W-J et al (2022) Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: a comparative study. Compos Part B Eng 238:109907

    Article  CAS  Google Scholar 

  4. Shchukina E, Graham M, Zheng Z, Shchukin D (2018) Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev 47:4156–4175

    Article  CAS  Google Scholar 

  5. Pu S, Jia Fu et al (2020) Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv Mater (Weinh) 32(17):907307

    Google Scholar 

  6. Libanori A, Chen G et al (2022) Smart textiles for personalized healthcare. Nat Electron 5:142–156

    Article  CAS  Google Scholar 

  7. Chen G, Xiao X et al (2022) Electronic textiles for wearable point-of-care systems. Chem Rev 122(3):3259–3291

    Article  CAS  Google Scholar 

  8. Feng C-P, Yang L-Y, Yang J et al (2020) Recent advances in polymer-based thermal interface materials for thermal management: a mini-review. Compos Commun 22:100528

    Article  Google Scholar 

  9. Shaikh S, Lafdi K, Silverman E (2007) The effect of a CNT interface on the thermal resistance of contacting surfaces. Carbon 45:695–703

    Article  CAS  Google Scholar 

  10. Uetani K, Ata S, Tomonoh S, Yamada T, Yumura M, Hata K (2014) Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv Mater 26:5857–5862

    Article  CAS  Google Scholar 

  11. Wang Z-G, Lv J-C, Zheng Z-L et al (2021) Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl Mater Interfaces 13:25325–25333

    Article  CAS  Google Scholar 

  12. Zhang Z, Qu J, Feng Y, Feng W (2018) Assembly of graphene-aligned polymer composites for thermal conductive applications. Compos Commun 9:33–41

    Article  Google Scholar 

  13. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28

    Article  CAS  Google Scholar 

  14. Chen H, Ginzburg VV, Yang J et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

  15. Shen H, Guo J, Wang H, Zhao N, Xu J (2015) Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl Mater Interfaces 7:5701–5708

    Article  CAS  Google Scholar 

  16. Song N, Cui S, Hou X, Ding P, Shi L (2017) Significant enhancement of thermal conductivity in nanofibrillated cellulose films with low mass fraction of nanodiamond. ACS Appl Mater Interfaces 9:40766–40773

    Article  CAS  Google Scholar 

  17. Lee G-W, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part A Appl Sci Manuf 37:727–734

    Article  CAS  Google Scholar 

  18. Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939

    Article  CAS  Google Scholar 

  19. Miró P, Audiffred M, Heine T (2014) An atlas of two-dimensional materials. Chem Soc Rev 43:6537–6554

    Article  Google Scholar 

  20. Pakdel A, Bando Y, Golberg D (2014) Nano boron nitride flatland. Chem Soc Rev 43:934–959

    Article  CAS  Google Scholar 

  21. Lee D, Song SH, Hwang J et al (2013) Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 9:2602–2610

    Article  CAS  Google Scholar 

  22. Guo Y, Ruan K, Shi X, Yang X, Gu J (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134

    Article  CAS  Google Scholar 

  23. Wang Z-G, Yang Y-L, Zheng Z-L et al (2020) Achieving excellent thermally conductive and electromagnetic shielding performance by nondestructive functionalization and oriented arrangement of carbon nanotubes in composite films. Compos Sci Technol 194:108190

    Article  CAS  Google Scholar 

  24. Jiang F, Cui S, Song N, Shi L, Ding P (2018) Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl Mater Interfaces 10:16812–16821

    Article  CAS  Google Scholar 

  25. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283

    Article  CAS  Google Scholar 

  26. Han GG, Li H, Grossman JC (2017) Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat Commun 8:1446

    Article  CAS  Google Scholar 

  27. Wu S, Li T, Tong Z et al (2019) High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv Mater 31:1905099

    Article  CAS  Google Scholar 

  28. Wang J, Andriamitantsoa RS, Atinafu DG, Gao H, Dong W, Wang G (2018) A one-step in-situ assembly strategy to construct PEG@ MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage. Chem Phys Lett 695:99–106

    Article  CAS  Google Scholar 

  29. Xiao Y-J, Wang W-Y, Lin T et al (2016) Largely enhanced thermal conductivity and high dielectric constant of poly (vinylidene fluoride)/boron nitride composites achieved by adding a few carbon nanotubes. J Phys Chem C 120:6344–6355

    Article  CAS  Google Scholar 

  30. Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu Z-Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57

    Article  CAS  Google Scholar 

  31. Ma T, Zhao Y, Ruan K et al (2020) Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces 12:1677–1686

    Article  CAS  Google Scholar 

  32. Liu Z, Li J, Liu X (2020) Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl Mater Interfaces 12:6503–6515

    Article  CAS  Google Scholar 

  33. Jang I, Shin K-H, Yang I et al (2017) Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents. Colloids Surf A Physicochem Eng Aspects 518:64–72

    Article  CAS  Google Scholar 

  34. Guo H, Liu J et al (2019) High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance. Compos Sci Technol 181:107713

    Article  CAS  Google Scholar 

  35. Rosely CS, Joseph AM, Leuteritz A, Gowd EB (2020) Phytic acid modified boron nitride nanosheets as sustainable multifunctional nanofillers for enhanced properties of poly (l-lactide). ACS Sustain Chem Eng 8:1868–1878

    Article  CAS  Google Scholar 

  36. Ryu S, Kim K, Kim J (2017) Silane surface modification of boron nitride for high thermal conductivity with polyphenylene sulfide via melt mixing method. Polym Adv Technol 28:1489–1494

    Article  CAS  Google Scholar 

  37. Oh H, Kim J (2019) Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity. Compos Sci Technol 172:153–162

    Article  CAS  Google Scholar 

  38. Wang Z, Li Q, Chen Z et al (2018) Enhanced comprehensive properties of nylon-6 nanocomposites by aniline-modified boron nitride nanosheets. Ind Eng Chem Res 57:11005–11013

    Article  CAS  Google Scholar 

  39. Song Q, Zhu W et al (2018) Enhanced thermal conductivity and mechanical property of flexible poly (vinylidene fluoride)/boron nitride/graphite nanoplatelets insulation films with high breakdown strength and reliability. Compos Sci Technol 168:381–387

    Article  CAS  Google Scholar 

  40. Xia Y, Li Q, Ji R et al (2020) Multielement synergetic effect of boron nitride and multiwalled carbon nanotubes for the fabrication of novel shape-stabilized phase-change composites with enhanced thermal conductivity. ACS Appl Mater Interfaces 12:41398–41409

    Article  CAS  Google Scholar 

  41. Gao X-R, Li Y, Huang H-D et al (2019) Extensional stress-induced orientation and crystallization can regulate the balance of toughness and stiffness of polylactide films: interplay of oriented amorphous chains and crystallites. Macromolecules 52:5278–5288

    Article  CAS  Google Scholar 

  42. Hu Y, Hu Y, Topolkaraev V, Hiltner A, Baer E (2003) Crystallization and phase separation in blends of high stereoregular poly (lactide) with poly (ethylene glycol). Polymer 44:5681–5689

    Article  CAS  Google Scholar 

  43. Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E (2003) Aging of poly (lactide)/poly (ethylene glycol) blends. Part 1. Poly (lactide) with low stereoregularity. Polymer 44:5701–5710

    Article  CAS  Google Scholar 

  44. Li FJ, Zhang SD, Liang JZ, Wang JZ (2015) Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym Adv Technol 26:465–475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51973141, 52033005, 51973138 and 52073185), the Postdoctoral Science Foundation of China (Grant No. 2019M663496), the State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2021-4-03), the Special Project of the State Tobacco Monopoly Administration (Grant No. 1102021001021), and New Tobacco Products Engineering and Technology Research Center of Sichuan Province (Grant No. 2020510107340038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Lin Han or Hua-Dong Huang.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 326 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, SH., Hu, YF., Huang, YC. et al. A dual cooling composite film by subtly combining phase change materials and thermally conductive fillers for efficient thermal management. J Mater Sci 57, 14464–14477 (2022). https://doi.org/10.1007/s10853-022-07551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07551-8

Navigation