Skip to main content
Log in

Desensitizing high energy materials HMX and CL-20 by the smallest all carbon compound cyclo[18]carbon: a DFT study

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The safety of energetic materials is very important to reduce accidents. Thus, for the first time, the smallest all carbon compound cyclo[18]carbon (C18) was used to develop new energetic composite materials to desensitize two most powerful energetic materials (HMX and CL-20). Based on the designed composites, the structures, interaction and binding strength, and safety performance of them were studied using DFT and ESP methods. The desensitizing mechanism was explored also. The results showed that the binding process of C18 with HMX or CL-20 was exothermic and spontaneous thermodynamically, and the binding energy of HMX/C18 and CL-20/C18 composites was negative, showing the high possibility of binding C18 with HMX or CL-20 to form energetic composite materials. The impact sensitivity of HMX and CL-20 could be reduced more than 40% through shortening the N-NO2 bonds, decreasing the number of positive ESP values and dispersing the region with high ESP values. C18 could also reduce the electrostatic sensitivity of them by decreasing the ability to electron withdrawing, enhancing the ability to electron donating and transition, and changing the electron-induced reaction sites from HMX or CL-20 to C18. In all, it is worth to form new HMX/C18 and CL-20/C18 energetic composite materials with superior safety performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ling C, Liu J, He W (2021) Bio-inspired fabrication of energetic crystals@cellulose nanofibers core-shell composites with improved stability and reduced sensitivity. Compos Commun 27:100868

    Article  Google Scholar 

  2. Chen T, Zhang Y, Guo S, Zhao L, Chen W, Hao G, Xiao L, Ke X, Jiang W (2019) Preparation and property of CL-20/BAMO-THF energetic nanocomposites. Def Technol 15(3):306–312

    Article  Google Scholar 

  3. Huang B, Xue Z, Chen S, Chen J, Li X, Xu K, Yan Q (2020) Stabilization of ε-CL-20 crystals by a minor interfacial doping of polydopamine-coated graphene oxide. Appl Surf Sci 510:145454

    Article  CAS  Google Scholar 

  4. Zhang Z, Yu C, Chen J, Zhou Q, Chen Y, Xu J, Xian M, Wang J, Yang G, Zhu X, Zhang W (2021) In-situ synthesis of an integrated CuN3/CL-20 explosive train film with excellent initiation ability. Chem Eng J 425:130676

    Article  CAS  Google Scholar 

  5. Chen L, Liu S, Cao X, Gao J, Wang Y, Qin Y, Zhang Y, Zhang J, Jin G, Wang M, Liu J, He W (2021) Fabrication of nitrocellulose-based nanoenergetic composites, study on its structure, thermal decomposition kinetics, mechanism, and sensitivity. Nano Sel. https://doi.org/10.1002/nano.202100046

    Article  Google Scholar 

  6. Zhang S, Kou K, Zhang J, Jia Q, Xu Y (2019) Compact energetic crystals@ urea-formaldehyde resin micro-composites with evident insensitivity. Compos Commun 15:103–107

    Article  Google Scholar 

  7. Lin C, Huang B, Gong F, Yang Z, Liu J, Zhang J, Zeng C, Li Y, Li J, Guo S (2019) Core@double-shell structured energetic composites with reduced sensitivity and enhanced mechanical properties. ACS Appl Mater Interfaces 11(33):30341–30351

    Article  CAS  Google Scholar 

  8. Zhang S, Gao Z, Jia Q, Liu N, Yao J, Zhang J, Kou K (2020) Bioinspired strategy for HMX@ hBNNS dual shell energetic composites with enhanced desensitization and improved thermal property. Adv Mater Interfaces 7(22):2001054

    Article  CAS  Google Scholar 

  9. Kosareva EK, Zharkov MN, Meerov DB, Gainutdinov RV, Fomenkov IV, Zlotin SG, Pivkina AN, Kuchurov IV, Muravyev NV (2022) HMX surface modification with polymers via sc-CO2 antisolvent process: a way to safe and easy-to-handle energetic materials. Chem Eng J 428:131363

    Article  CAS  Google Scholar 

  10. He G, Li X, Jiang Y, Dai Y, Xu R, Zeng C, Tu X, Yang Z (2020) Bioinspired hierarchical interface design for improved mechanical and safety properties in energetic polymer composites. J Mater Sci 55(33):15726–15740

    Article  CAS  Google Scholar 

  11. Kaiser K, Scriven LM, Schulz F, Gawel P, Gross L, Anderson HL (2019) An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365(6459):1299–1301

    Article  CAS  Google Scholar 

  12. Scriven LM, Kaiser K, Schulz F, Sterling AJ, Woltering SL, Gawel P, Christensen KE, Anderson HL, Gross L (2020) Synthesis of cyclo[18]carbon via debromination of C18Br6. J Am Chem Soc 142(30):12921–12924

    Article  CAS  Google Scholar 

  13. Baryshnikov GV, Valiev RR, Kuklin AV, Sundholm D, Ågren H (2019) Cyclo[18]carbon: insight into electronic structure, aromaticity, and surface coupling. J Phys Chem Lett 10(21):6701–6705

    Article  CAS  Google Scholar 

  14. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165:461–467

    Article  CAS  Google Scholar 

  15. Stasyuk AJ, Stasyuk OA, Solà M, Voityuk AA (2020) Cyclo[18]carbon: the smallest all-carbon electron acceptor. Chem Commun 56(3):352–355

    Article  CAS  Google Scholar 

  16. Fang SY, Hu YH (2021) Cyclo[18]carbon as an ultra-elastic molecular O-ring with unique mechanical properties. Carbon 171:96–103

    Article  CAS  Google Scholar 

  17. Liu Z, Lu T, Chen Q (2021) Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon 171:514–523

    Article  CAS  Google Scholar 

  18. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  19. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21+ G basis set for first-row elements. Li-F J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09, Rev. D.01. Gaussian Inc., Wallingford, CT

    Google Scholar 

  21. Pospíšil M, Vávra P, Koncha MC, Murray JS, Politzer P (2009) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16(5):895–901

    Article  Google Scholar 

  22. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Molecular Graph Model 38:314–323

    Article  Google Scholar 

  23. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  24. Zhi C, Han J, Qiu W, Peng S, Zhang J (2014) Relation between electric spark sensitivity of nitramine and its molecular electronic properties. J Xi’an Technol Univ 34(09):698–702

    Google Scholar 

  25. Storm CB, Stine JR, Kramer JF (1990) Chemistry and physics of energetic materials. In: Bulusu SN (ed) Sensitivity relationships in energetic materials. Kluwer, Dordrecht, pp 605–639

    Google Scholar 

  26. Meyer R, Köhler J, Homburg A (2007) Explosives, 6th edn. WileyVCH, Weinheim

    Book  Google Scholar 

  27. Zhou D, Lv C, Geng X, Wei Y, Zhang J (2011) Effect of particle size of ammonium nitrate explosive on electrostatic spark sensitivity. Shanxi Chem Ind 31(001):18–20

    Google Scholar 

  28. Zeman S, Kočí J (2000) Electric spark sensitivity of polynitro compounds: part IV. A relation to thermal decomposition parameters. Chin J Energ Mater 8(1):23–26

    Google Scholar 

  29. Lu T Multiwfn Manual, version 3.8, Section 3.24.1, available at http://sobereva.com/multiwfn. Accessed on 1 Dec 2020

  30. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  31. Lu T, Liu Z, Chen Q (2021) Comment on “18 and 12–Member carbon rings (cyclo [n] carbons)–a density functional study.” Mater Sci Eng B 273:115425

    Article  CAS  Google Scholar 

  32. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo [18] carbon: Bonding character, electron delocalization, and aromaticity. Carbon 165:468–475

    Article  CAS  Google Scholar 

  33. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107(1):89–97

    Article  CAS  Google Scholar 

  34. Ordzhonikidze O, Pivkina A, Frolov Y, Muravyev N, Monogarov K (2011) Comparative study of HMX and CL-20: thermal analysis, combustion and interaction with aluminium. J Therm Anal Calorim 105(2):529–534

    Article  CAS  Google Scholar 

  35. Oxley JC, Kooh AB, Szekeres R, Zheng W (1994) Mechanisms of nitramine thermolysis. J Phys Chem 98(28):7004–7008

    Article  CAS  Google Scholar 

  36. Kimura J, Kubota N (2010) Thermal decomposition process of HMX. Propell Explos Pyrot 5(1):1–8

    Article  Google Scholar 

  37. Lu T, Chen Q (2021) Shermo: a general code for calculating molecular thermochemistry properties. Comput Theor Chem 1200:113249

    Article  CAS  Google Scholar 

  38. Liu Z, Wang X, Lu T, Yuan A, Yan A (2022) Potential optical molecular switch: lithium@ cyclo [18] carbon complex transforming between two stable configurations. Carbon 187:78–85

    Article  CAS  Google Scholar 

  39. Feng S, Guo F, Yuan C, Cheng X, Li Z, Su L (2020) Ab-initio molecular dynamics study on chemical decomposition reaction of α-HMX. Chem Phys Lett 748:137394

    Article  CAS  Google Scholar 

  40. Zhang M, Zhao F, Li H, Yuan Z, Dong S, Wang Y, Chen X, Yang Y, Dong X, Jiang Z (2022) Insight into graphene-salen metal nanocomposites on combustion performance and mechanism of HMX-CMDB propellant. Chem Eng J 429:132175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Natural Science Foundation of Jiangsu (BK20170761), Postdoctoral Research Funding Program of Jiangsu (2021K192B) and Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2974 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Teng, Z. & Zhu, W. Desensitizing high energy materials HMX and CL-20 by the smallest all carbon compound cyclo[18]carbon: a DFT study. J Mater Sci 57, 10197–10212 (2022). https://doi.org/10.1007/s10853-022-07283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07283-9

Navigation