Skip to main content

Advertisement

Log in

High-performance non-silicone thermal interface materials based on tunable size and polymorphic liquid metal inclusions

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Incorporating liquid metal droplets into polymer matrix has become one of the most promising strategies to enhance the thermally conductive performance of thermal interface materials (TIMs) for the escalating heat dissipation demands from highly integrated electronic devices. However, most of the TIMs typically choose silicone polymer as the matrix material, which would exhibit silicone oil precipitation and siloxane evaporation after long time utilization. Here, we present a non-silicone TIM with efficient heat dissipation capability by incorporating multi-shaped and proper-sized liquid metal droplets into an epoxy matrix via a combined fabrication approach. This liquid metal epoxy composite (LMEC) exhibits a high thermal conductivity enhanced up to 14 W \(\hbox {m}^{-1}\) \(\hbox {K}^{-1}\) (nearly 78\(\times\) increase over the matrix) at 85% volume fraction and an ultra-low thermal resistance of 0.0043 K \(\hbox {W}^{-1}\) at 65% volume fraction. Its Kapitza radius and thermal interfacial resistance are estimated from the experimental results, respectively, about 75 nm and \(4.17 \times 10^{-7}\) \(\hbox {m}^{2}\) K \(\hbox {W}^{-1}\), which helps explaining the reduced thermal conductivity of composites with small droplet inclusions. Moreover, actual cooling tests on a high power heating device demonstrate that 65% LMEC shows superior cooling effects than the non-silicone TIMs of indium foil, pure liquid metal, 85% LMEC, and the silicone oil-based liquid metal composites of 65 and 85% volume fraction, which indicate that not the TIMs with higher intrinsic thermal conductivity would exhibit superior heat dissipation effects, but those possessing low thermal resistance between the heat source and heat sink show better heat transfer properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Gwinn JP, Webb RL (2003) Performance and testing of thermal interface materials. Microelectron J 34:215–222

    Article  CAS  Google Scholar 

  2. Prasher R (2006) Thermal interface materials: historical perspective, status, and future directions. Proc IEEE 94:1571–1586

    Article  CAS  Google Scholar 

  3. Mallik S, Ekere N, Best C, Bhatti R (2011) Investigation of thermal management materials for automotive electronic control units. Appl Therm Eng 31:355–362

    Article  CAS  Google Scholar 

  4. Razeeb KM, Dalton E, Cross GLW, Robinson AJ (2018) Present and future thermal interface materials for electronic devices. Int Mater Rev 63:1–21

    Article  CAS  Google Scholar 

  5. Dai W, Lv L, Lu J, Hou H, Yan Q, Alam FE, Li Y, Zeng X, Yu J, Wei Q et al (2019) A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13:1547–1554

    CAS  Google Scholar 

  6. Bahru R, Zamri MFMA, Shamsuddin AH, Shaari N, Mohamed MA (2021) A review of thermal interface material fabrication method toward enhancing heat dissipation. Int J Energ Res 45:3548–3568

    Article  Google Scholar 

  7. Kong S, Mariatti M, Busfield J (2011) Effects of types of fillers and filler loading on the properties of silicone rubber composites. J Reinf Plast Comp 30:1087–1096

    Article  CAS  Google Scholar 

  8. Yu H, Li L, Kido T, Xi G, Xu G, Guo F (2012) Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J Appl Polym Sci 124:669–677

    Article  CAS  Google Scholar 

  9. Zhang P, Li Q, Xuan Y (2014) Thermal contact resistance of epoxy composites incorporated with nano-copper particles and the multi-walled carbon nanotubes. Compos Part A Appl Sci Manuf 57:1–7

    Article  Google Scholar 

  10. Lewis JS, Barani Z, Magana AS, Kargar F, Balandin AA (2019) Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater Res Express 6:085325

    Article  CAS  Google Scholar 

  11. Prasher RS, Koning P, Shipley J, Devpura A (2003) Dependence of thermal conductivity and mechanical rigidity of particle-laden polymeric thermal interface material on particle volume fraction. J Electron Packag 125:386–391

    Article  CAS  Google Scholar 

  12. Hu X, Jiang L, Goodson KE (2003) Impact of wall region particle volume fraction distribution on thermal resistance of particle filled thermal interface materials [electronic packaging]. In: 19th Ann IEEE SEMi Therm Meas and MGT SYM pp 106–111

  13. Wong C, Bollampally RS (1999) Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Poly Sci 74:3396–3403

    Article  CAS  Google Scholar 

  14. Seki Y, Avci B, Uzun S, Kaya N, Atagur M, Sever K, Sarikanat M (2019) The using of graphene nano-platelets for a better through-plane thermal conductivity for polypropylene. Poly Comp 40:1320–1328

    Article  Google Scholar 

  15. Chowdhury P, Sikka K, Grill A, Parekh DP (2019) Optimal filler sizes for thermal interface materials. In: 18th Therm and Therm-mech Pheno in Elec Sys ITherm, pp 52–57

  16. Gouda K, Bhowmik S, Das B (2020) Thermomechanical behavior of graphene nanoplatelets and bamboo micro filler incorporated epoxy hybrid composites. Mater Res Express 7:015328

    Article  CAS  Google Scholar 

  17. Bartlett MD, Fassler A, Kazem N, Markvicka EJ, Mandal P, Majidi C (2016) Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv Mater 28:3726–3731

    Article  CAS  Google Scholar 

  18. Ralphs MI, Kemme N, Vartak PB, Joseph E, Tipnis S, Turnage S, Solanki KN, Wang RY, Rykaczewski K (2018) In situ alloying of thermally conductive polymer composites by combining liquid and solid metal microadditives. ACS Appl Mater Interfaces 10:2083–2092

    Article  CAS  Google Scholar 

  19. Ford MJ, Patel DK, Pan C, Bergbreiter S, Majidi C (2020) Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv Mater 32:2002929

    Article  CAS  Google Scholar 

  20. Wang X, Lu C, Rao W (2021) Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications. Appl Therm Eng: 116937

  21. Tutika R, Kmiec S, Haque AT, Martin SW, Bartlett MD (2019) Liquid metal-elastomer soft composites with independently controllable and highly tunable droplet size and volume loading. ACS Appl Mater Interfaces 11:17873–17883

    Article  CAS  Google Scholar 

  22. Pan C, Markvicka EJ, Malakooti MH, Yan J, Hu L, Matyjaszewski K, Majidi C (2019) A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Adv Mater 31:1900663

    Article  Google Scholar 

  23. Tutika R, Haque AT, Bartlett MD (2021) Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Commun Mater 2:1–8

    Article  Google Scholar 

  24. Fassler A, Majidi C (2015) Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 27:1928–1932

    Article  CAS  Google Scholar 

  25. Yang XH, Liu J (2018) Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling. Front Energy 12:259–275

    Article  Google Scholar 

  26. Chen S, Deng Z, Liu J (2020) High performance liquid metal thermal interface materials. Nanotech 32:092001

    Article  Google Scholar 

  27. Deng Y, Jiang Y (2021) High-performance, safe, and reliable soft-metal thermal pad for thermal management of electronics. Appl Therm Eng 199:117555

    Article  CAS  Google Scholar 

  28. Wang SH, Stanler FJ, Zhou XC (2021) Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J Phys Chem C 125:20113–20142

    Article  Google Scholar 

  29. Gao Y, Liu J (2012) Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 107:701–708

    Article  CAS  Google Scholar 

  30. Roy CK, Bhavnani S, Hamilton MC, Johnson RW, Nguyen JL, Knight RW, Harris DK (2015) Investigation into the application of low melting temperature alloys as wet thermal interface materials. Int J Heat Mass Transf 85:996–1002

    Article  CAS  Google Scholar 

  31. Roy CK, Bhavnani S, Hamilton MC, Johnson RW, Knight RW, Harris DK (2015) Accelerated aging and thermal cycling of low melting temperature alloys as wet thermal interface materials. Microelectron Reliab 55:2698–2704

    Article  CAS  Google Scholar 

  32. Roy CK, Bhavnani S, Hamilton MC, Johnson RW, Knight RW, Harris DK (2016) Thermal performance of low melting temperature alloys at the interface between dissimilar materials. Appl Therm Eng 99:72–79

    Article  CAS  Google Scholar 

  33. Wei S, Yu Z, Zhou L, Guo J (2019) Investigation on enhancing the thermal conductance of gallium-based thermal interface materials using chromium-coated diamond particles. J Mater Sci Mater Electron 30:7194–7202

    Article  CAS  Google Scholar 

  34. Kong W, Wang Z, Wang M, Manning KC, Uppal A, Green MD, Wang RY, Rykaczewski K (2019) Oxide-mediated formation of chemically stable Tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv Mater 31:1904309

    Article  CAS  Google Scholar 

  35. Wang H, Xing W, Chen S, Song C, Dickey MD, Deng T (2021) Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv Mater 33:2103104

    Article  CAS  Google Scholar 

  36. Wang C, Gong Y, Cunning BV, Lee S, Le Q, Joshi SR, Buyukcakir O, Zhang H, Seong WK, Huang M et al (2021) A general approach to composites containing nonmetallic fillers and liquid gallium. Sci Adv 7:3767

    Article  Google Scholar 

  37. Ki S, Shim J, Oh S, Koh E, Seo D, Ryu S, Kim J, Nam Y (2021) Gallium-based liquid metal alloy incorporating oxide-free copper nanoparticle clusters for high-performance thermal interface materials. Int J Heat Mass Transf 170:121012

    Article  CAS  Google Scholar 

  38. Wang XH, Lu CN, Rao W (2021) Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications. Appl Therm Eng 192:116937

    Article  CAS  Google Scholar 

  39. Zhao L, Liu H, Chen X, Chu S, Liu H, Lin Z, Li Q, Chu G, Zhang H (2018) Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving. J Mater Chem C 6:10611–10617

    Article  CAS  Google Scholar 

  40. Jeong SH, Chen S, Huo J, Gamstedt EK, Liu J, Zhang SL, Zhang ZB, Hjort K, Wu Z (2015) Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Sci Rep 5:1–10

    Google Scholar 

  41. Bartlett MD, Kazem N, Powell-Palm MJ, Huang X, Sun W, Malen JA, Majidi C (2017) High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci 114:2143–2148

    Article  CAS  Google Scholar 

  42. Mei S, Gao Y, Deng Z, Liu J (2014) Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil. J Electron Packag 136:011009

    Article  Google Scholar 

  43. Fan P, Sun Z, Wang Y, Chang H, Zhan P, Yao S, Lu C, Rao W, Liu J (2018) Nano liquid metal for the preparation of a thermally conductive and electrically insulating material with high stability. RSC Adv 8:16232–16242

    Article  CAS  Google Scholar 

  44. Anithambigai P, Shanmugan S, Mutharasu D, Zahner T, Lacey D (2014) Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material. Microelectron J 45:1726–1733

    Article  CAS  Google Scholar 

  45. Park W, Guo Y, Li X, Hu J, Liu L, Ruan X, Chen YP (2015) High-performance thermal interface material based on few-layer graphene composite. J Phy Chem C 119:26753–26759

    Article  CAS  Google Scholar 

  46. Shah NUH, Kong W, Casey N, Kanetkar S, Wang RY, Rykaczewski K (2021) Gallium oxide-stabilized oil in liquid metal emulsions. Soft Matter 17:8269

    Article  CAS  Google Scholar 

  47. Hayashi Y, Saneie N, Yip G, Kim JY, Kim JH (2016) Metallic nanoemulsion with galinstan for high heat-flux thermal management. Int J Heat Mass Transf 101:1204–1216

    Article  CAS  Google Scholar 

  48. Yamaguchi A, Mashima Y, Iyoda T (2015) Reversible size control of liquid-metal nanoparticles under ultrasonication. Angew Chem Int Ed 54:12809–12813

    Article  CAS  Google Scholar 

  49. Ren L, Zhuang J, Casillas G, Feng H, Liu Y, Xu X, Liu Y, Chen J, Du Y, Jiang L, Dou SX (2016) Nanodroplets for stretchable superconducting circuits. Adv Funct Mater 26:8111–8118

    Article  CAS  Google Scholar 

  50. Uppal A, Ralphs M, Kong W, Hart M, Rykaczewski K, Wang RY (2020) Pressure-activated thermal transport via oxide shell rupture in liquid metal capsule beds. ACS Appl Mater Interfaces 12:2625–2633

    Article  CAS  Google Scholar 

  51. Farrell ZJ, Tabor C (2018) Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation. Langmuir 34:234–240

    Article  CAS  Google Scholar 

  52. Lu Y, Hu Q, Lin Y, Pacardo DB, Wang C, Sun W, Ligler FS, Dickey MD, Gu Z (2015) Transformable liquid-metal nanomedicine. Nat Commun 6:1–10

    Article  CAS  Google Scholar 

  53. Finkenauer LR, Lu Q, Hakem IF, Majidi C, Bockstaller MR (2017) Analysis of the efficiency of surfactant-mediated stabilization reactions of EGaIn nanodroplets. Langmuir 33:9703–9710

    Article  CAS  Google Scholar 

  54. Kong W, W ZY, Casey N, Korah M. M., Uppal A, Green M. D., Rykaczewski K, Wang R.Y. (2021) High thermal conductivity in multiphase liquid metal and silicon carbide soft composites. Adv Mater Interfaces 8:2100069

  55. Uppal A, Kong W, Rana A, Wang RY, Rykaczewski K (2021) Enhancing thermal transport in silicone composites via bridging liquid metal fillers with reactive metal co-fillers and matrix viscosity tuning. ASC Appl Mater Interfaces 13:43348–43355

    Article  CAS  Google Scholar 

  56. Krings EJ, Zhang HP, Sarin S, Shield JE, Ryu SJ, Markvicka EJ (2021) Lightweight, thermally conductive liquid metal elastomer composite with independently controllable thermal conductivity and density. Small 17:2104762

    Article  CAS  Google Scholar 

  57. Every A, Tzou Y, Hasselman D, Raj R (1992) The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metall Mater 40:123–129

    Article  CAS  Google Scholar 

  58. Hasselman D, Donaldson KY, Geiger AL (1992) Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J Am Ceram Soc 75:3137–3140

    Article  CAS  Google Scholar 

  59. Davis L, Artz B (1995) Thermal conductivity of metal-matrix composites. J Appl Phys 77:4954–4960

    Article  CAS  Google Scholar 

  60. Jiajun W, Xiao-Su Y (2004) Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Compos Sci Technol 64:1623–1628

    Article  Google Scholar 

  61. Hasselman D, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21:508–515

    Article  Google Scholar 

  62. Kapitza PL (1941) The study of heat transfer in helium II. J Phys(Moscow) 4: 181

  63. JrBR Powell, Youngblood G, Hasselman D, Bentsen LD (1980) Effect of thermal expansion mismatch on the thermal diffusivity of glass-Ni composites. J Am Ceram Soc 63:581–586

    Article  Google Scholar 

  64. Zhu LF, Chen YZ, Shang WH, Wang SH, Zhou XH, Gan TS, Wu QX, Liu YZ, Zhou XC (2019) Anisotropic liquid metal-elastomer composites. J Mater Chem C 7:10166

    Article  CAS  Google Scholar 

  65. Zhang PJ, Wang Q, Guo R, Zhang MK, Wang SQ, Lu CN, Xue MQ, Fan JB, He ZZ, Rao W (2019) Self-assembled ultrathin film of CNC/PVA-liquid metal composite as a multifunctional Janus material. Mater Horiz 6:1643

    Article  CAS  Google Scholar 

  66. Neumann TV, Facchine EG, Leonardo B, Khan S, Dickey MD (2020) Direct write printing of a self-encapsulating liquid metal-silicone composite. Soft Matter 16:6608

    Article  CAS  Google Scholar 

  67. Pan CF, Liu DY, Ford MJ, Majidi C (2020) Ultrastretchable, wearable triboelectric nanogenerator based on sedimented liquid metal elastomer composite. Adv Mater Technol 5:2000754

    Article  CAS  Google Scholar 

  68. Deng YG, Liu J (2009) Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl Phys A 95:907–915

    Article  CAS  Google Scholar 

  69. Rajagopalan M, Bhatia M, Tschopp M, Srolovitz D, Solanki K (2014) Atomic-scale analysis of liquid-gallium embrittlement of aluminum grain boundaries. Acta Mater 73:312–325

    Article  CAS  Google Scholar 

  70. Ki S, Shim J, Oh S, Ryu S, Kim J, Nam Y (2021) Rapid enhancement of thermal conductivity by incorporating oxide-free copper nanoparticle clusters for highly conductive liquid metal-based thermal interface materials. In: IEEE 71st Elec Comp and Tech Conf: 601–606

  71. Falat T, Matkowski P, Platek B, Zandén C, Felba J, Ye LL, Liu J, (2013) Investigation on interaction between indium based thermal interface material and copper and silicon substrates. EUR MicroElec Pack Conf 2013:1–5

  72. Deppisch C, Fitzgerald T, Raman A, Hua F, Zhang C, Liu P, Miller M (2006) The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging. JOM : 67–74

  73. Abadi PPSS, Chung D (2011) Numerical modeling of the performance of thermal interface materials in the form of paste-coated sheets. J Electron Mater 40:1490–1500

    Article  Google Scholar 

  74. Huang K, Qiu W, Ou M, Liu X, Liao Z, Chu S (2020) An anti-leakage liquid metal thermal interface material. RSC Adv 10:18824–18829

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly thank for the technical support of SEM and EDS characteristics from Dr. Chang LI and engineer Yuxiao WANG from Nanjing IPE Institute of Green Manufacturing Industry and engineer Songhai Xu from Casmal Thermal Technology Corporation. This research was funded by the National Natural Science Foundation of China (Grant Number 52006219) and the Funding of Nanjing Institute of Future Energy System (KCW-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulan Huai.

Ethics declarations

Conflict of interest

All authors discussed and commented on this manuscript. And the authors declare no conflicts of interest.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4340kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Liu, B., Li, S. et al. High-performance non-silicone thermal interface materials based on tunable size and polymorphic liquid metal inclusions. J Mater Sci 57, 11026–11045 (2022). https://doi.org/10.1007/s10853-022-07210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07210-y