Skip to main content

Advertisement

Log in

An ultrasensitive MnO2-S,O-doped g-C3N4 nanoprobe for “turn-on” detection of glutathione and cell imaging

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The utilization of nanomaterial-based probes in detecting glutathione (GSH) and cell imaging has aroused extensive attention owing to the excellent properties of nanoprobes. Herein, we have synthesized manganese dioxide-S, O co-doped graphitic carbon nitride quantum dots (MnO2-S, O-CNQDs) nanocomposite by in situ synthesis of MnO2 nanosheets in S,O-CNQDs dispersion solution. It was found that GSH could specifically bind to MnO2-S, O-CNQDs so that the fluorescence of S, O-CNQDs could be recovered. As such, a “turn-on” MnO2-S, O-CNQDs nanoprobe can be fabricated and applied to rapidly determine trace amounts of GSH. Under the optimal conditions, MnO2-S, O-CNQDs shows sensitive response to GSH in the range 10–270 μM with a detection limit of 0.307 μM (S/N = 3). The developed MnO2-S, O-CNQDs probe has demonstrated great potential to detection of GSH in biological samples and glutathione injections. What is more, MTT assay indicates that MnO2-S, O-CNQDs has low biotoxicity. The non-fluorescence MnO2-S, O-CNQDs reacts with GSH to recover the fluorescence of S, O-CNQDs in HepG2 cells. Thus, the “turn-on” fluorescence change of MnO2-S, O-CNQDs offers a potentially useful tool to monitor GSH of cancer cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kong RM, Ma L, Han X, Ma C, Qu F, Xia L (2020) Hg2+-mediated stabilization of G-triplex based molecular beacon for label-free fluorescence detection of Hg2+, reduced glutathione, and glutathione reductase activity. Spectrochim Acta A Mol Biomol Spectrosc 228:117855. https://doi.org/10.1016/j.saa.2019.117855

    Article  CAS  Google Scholar 

  2. Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P (2019) Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev 2019:3150145. https://doi.org/10.1155/2019/3150145

    Article  CAS  Google Scholar 

  3. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25. https://doi.org/10.1016/j.freeradbiomed.2013.05.001

    Article  CAS  Google Scholar 

  4. Lu SC, Mato JM, Espinosa-Diez C, Lamas S (2016) MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radic Biol Med 100:66–72. https://doi.org/10.1016/j.freeradbiomed.2016.03.021

    Article  CAS  Google Scholar 

  5. Pocernich CB, Butterfield DA (2012) Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 5:625–630. https://doi.org/10.1016/j.bbadis.2011.10.003

    Article  CAS  Google Scholar 

  6. Perricone C, De Carolis C, Perricone R (2009) Glutathione: a key player in autoimmunity. Autoimmun Rev 8(8):697–701. https://doi.org/10.1016/j.autrev.2009.02.020

    Article  CAS  Google Scholar 

  7. Iwasaki Y, Saito Y, Nakano Y, Mochizuki K, Sakata O, Ito R, Saito K, Nakazawa H (2009) Chromatographic and mass spectrometric analysis of glutathione in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 877(28):309–317. https://doi.org/10.1016/j.jchromb.2009.07.001

    Article  CAS  Google Scholar 

  8. Hanko M, Svorc L, Plankova A, Mikus P (2019) Overview and recent advances in electrochemical sensing of glutathione: a review. Anal Chim Acta 1062:1–27. https://doi.org/10.1016/j.aca.2019.02.052

    Article  CAS  Google Scholar 

  9. Saha A, Jana NR (2013) Detection of cellular glutathione and oxidized glutathione using magnetic-plasmonic nanocomposite-based “turn-off” surface enhanced Raman scattering. Anal Chem 85(19):9221–9228. https://doi.org/10.1021/ac4019457

    Article  CAS  Google Scholar 

  10. Wawegama NK, Browning GF, Kanci A, Marenda MS, Markham PF (2014) Development of a recombinant protein-based enzyme-linked immunosorbent assay for diagnosis of Mycoplasma bovis infection in cattle. Clin Vaccine Immunol 21(2):196–202. https://doi.org/10.1128/cvi.00670-13

    Article  Google Scholar 

  11. Chen JA, Zhang ZY, Gao J, Tan JH, Gu XF (2019) Design of fluorescent probes with optimized responsiveness and selectivity to GSH. Tetrahedron Lett 60(18):1226–1230. https://doi.org/10.1016/j.tetlet.2019.03.051

    Article  CAS  Google Scholar 

  12. Li Y, Jiang L, Zou Y, Song Z, Jin S (2021) Highly reproducible SERS sensor based on self-assembled Au nanocubic monolayer film for sensitive and quantitative detection of glutathione. Appl Surf Sci 540:148381. https://doi.org/10.1016/j.apsusc.2020.148381

    Article  CAS  Google Scholar 

  13. Zhang L, Ling B, Wang L, Chen H (2017) A near-infrared luminescent Mn2+-doped NaYF4:Yb, Tm/Fe3+ upconversion nanoparticles redox reaction system for the detection of GSH/Cys/AA. Talanta 172:95–101. https://doi.org/10.1016/j.talanta.2017.05.031

    Article  CAS  Google Scholar 

  14. Zhang Y, Zhang W, Chen K, Yang Q, Hu N, Suo Y, Wang J (2018) Highly sensitive and selective colorimetric detection of glutathione via enhanced Fenton-like reaction of magnetic metal organic framework. Sens Actuators B Chem 262:95–101. https://doi.org/10.1016/j.snb.2018.01.221

    Article  CAS  Google Scholar 

  15. Chu S, Wang H, Du Y, Yang F, Yang L, Jiang C (2020) Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: visual monitoring of glutathione in human serum for health prognosis. ACS Sustain Chem Eng 8(22):8175–8183. https://doi.org/10.1021/acssuschemeng.0c00690

    Article  CAS  Google Scholar 

  16. Pan J, Zheng Z, Yang J, Wu Y, Lu F, Chen Y, Gao W (2017) A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots. Talanta 166:1–7. https://doi.org/10.1016/j.talanta.2017.01.033

    Article  CAS  Google Scholar 

  17. He F, Wang Z, Li Y, Peng S, Liu B (2020) The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl Catal B 269:118828. https://doi.org/10.1016/j.apcatb.2020.118828

    Article  CAS  Google Scholar 

  18. Wang L, Tong Y, Feng J, Hou J, Li J, Hou X, Liang J (2019) g-C3-N4based films: a rising star for photoelectrochemical water splitting. Sustain Mater Technol 19:e00089. https://doi.org/10.1016/j.susmat.2018.e00089

    Article  CAS  Google Scholar 

  19. Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455. https://doi.org/10.1016/j.bios.2017.03.031

    Article  CAS  Google Scholar 

  20. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2012) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18–21. https://doi.org/10.1021/ja308249k

    Article  CAS  Google Scholar 

  21. Habibi Jouybari M, Hosseini S, Mahboobnia K, Boloursaz LA, Moradi M, Irani M (2019) Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro. Colloids Surf B Biointerfaces 179:495–504. https://doi.org/10.1016/j.colsurfb.2019.04.026

    Article  CAS  Google Scholar 

  22. Taheri H, Unal MA, Sevim M, Gurcan C, Ekim O, Ceylan A, Syrgiannis Z, Christoforidis KC et al (2020) Photocatalytically active graphitic carbon nitride as an effective and safe 2D material for in vitro and in vivo photodynamic therapy. Small 16(10):e1904619. https://doi.org/10.1002/smll.201904619

    Article  CAS  Google Scholar 

  23. Zhao Z, Zheng H, Wang Y, Cai X, Mao L, Zhang J (2019) Hydrogen atom etching induced large-size ultrathin g-C3N4 nanosheets for enhanced photoluminescence. J Lumin 206:660–665. https://doi.org/10.1016/j.jlumin.2018.10.080

    Article  CAS  Google Scholar 

  24. Naidu PP, Raghavendra G, Ojha S, Paplal B (2019) Effect of g-C3N4 nanofiller as filler on mechanical properties of multidirectional glass fiber epoxy hybrid composites. J Appl Polym Sci 137(9):48413. https://doi.org/10.1002/app.48413

    Article  CAS  Google Scholar 

  25. Yang J, Liang Y, Li K, Yang G, Wang K, Xu R, Xie X (2019) Cyano and potassium-rich g-C3N4 hollow tubes for efficient visible-light-driven hydrogen evolution. Catal Sci Technol 9(13):3342–3346. https://doi.org/10.1039/c9cy00925f

    Article  CAS  Google Scholar 

  26. Rong M, Cai Z, Xie L, Lin C, Song X, Luo F, Wang Y, Chen X (2016) Study on the ultrahigh quantum yield of fluorescent P, O-g-C3N4 nanodots and its application in cell imaging. Chemistry 22(27):9387–9395. https://doi.org/10.1002/chem.201601065

    Article  CAS  Google Scholar 

  27. Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y (2018) MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90(4):2618–2624. https://doi.org/10.1021/acs.analchem.7b04193

    Article  CAS  Google Scholar 

  28. Garg D, Mehta A, Mishra A, Basu S (2018) A sensitive turn on fluorescent probe for detection of biothiols using MnO2@carbon dots nanocomposites. Spectrochim Acta A Mol Biomol Spectrosc 192:411–419. https://doi.org/10.1016/j.saa.2017.11.041

    Article  CAS  Google Scholar 

  29. Yang J, Huang Z, Hu Y, Ge J, Li J, Li Z (2018) A facile fluorescence assay for rapid and sensitive detection of uric acid based on carbon dots and MnO2 nanosheets. New J Chem 42(18):15121–15126. https://doi.org/10.1039/c8nj02607f

    Article  CAS  Google Scholar 

  30. Xue L, Guo R, Huang F, Qi W, Liu Y, Cai G, Lin J (2020) An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria. Biosens Bioelectron 173:112800. https://doi.org/10.1016/j.bios.2020.112800

    Article  CAS  Google Scholar 

  31. Yuan J, Cen Y, Kong XJ, Wu S, Liu CL, Yu RQ, Chu X (2015) MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces 7(19):10548–10555. https://doi.org/10.1021/acsami.5b02188

    Article  CAS  Google Scholar 

  32. Li Q, Xia Y, Wan X, Yang S, Cai Z, Ye Y, Li G (2020) Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater Sci Eng C Mater Biol Appl 109:110615. https://doi.org/10.1016/j.msec.2019.110615

    Article  CAS  Google Scholar 

  33. Zhou J, Yang Y, Zhang CY (2013) A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun 49(77):8605–8607. https://doi.org/10.1039/c3cc42266f

    Article  CAS  Google Scholar 

  34. Wang H, Lu Q, Li M, Li H, Liu Y, Li H, Zhang Y, Yao S (2018) Electrochemically prepared oxygen and sulfur co-doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols. Anal Chim Acta 1027:121–129. https://doi.org/10.1016/j.aca.2018.03.063

    Article  CAS  Google Scholar 

  35. Lu YC, Chen J, Wang AJ, Bao N, Feng JJ, Wang W, Shao L (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J Mater Chem C 3(1):73–78. https://doi.org/10.1039/c4tc02111h

    Article  CAS  Google Scholar 

  36. Wu M, Hou P, Dong L, Cai L, Chen Z, Zhao M, Li J (2019) Manganese dioxide nanosheets: from preparation to biomedical applications. Int J Nanomed 14:4781–4800. https://doi.org/10.2147/ijn.s207666

    Article  CAS  Google Scholar 

  37. Sundari R, Alva S, Sebayang D, Wahyudi H, Jonit S, Kamaruddin A (2018) Characterization of fabricated MnO2-amberlite photocatalyst by FTIR, XRD and SEM for alizarin removal. IOP Conf Ser Mater Scince Eng 343:012003. https://doi.org/10.1088/1757-899X/343/1/012003

    Article  Google Scholar 

  38. Zhou X, Shao C, Li X, Wang X, Guo X, Liu Y (2018) Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. J Hazard Mater 344:113–122. https://doi.org/10.1016/j.jhazmat.2017.10.006

    Article  CAS  Google Scholar 

  39. Li Y, Li P, Wang J, Yang Y, Yao W, Wei Z, Wu J, Yan X et al (2018) Water soluble graphitic carbon nitride with tunable fluorescence for boosting broad-response photocatalysis. Appl Catal B 225:519–529. https://doi.org/10.1016/j.apcatb.2017.12.017

    Article  CAS  Google Scholar 

  40. Feng X, Cox DF (2018) Oxidation of MnO(100) and NaMnO2 formation: Characterization of Mn2+ and Mn3+ surfaces via XPS and water TPD. Surf Sci 675:47–53. https://doi.org/10.1016/j.susc.2018.04.022

    Article  CAS  Google Scholar 

  41. Wang Y, Zhu M, Jiang E, Hua R, Na R, Li QX (2017) A simple and rapid turn on ESIPT fluorescent probe for colorimetric and ratiometric detection of biothiols in living cells. Sci Rep 7(1):4377. https://doi.org/10.1038/s41598-017-03901-8

    Article  CAS  Google Scholar 

  42. Cai QY, Li J, Ge J, Zhang L, Hu YL, Li ZH, Qu LB (2015) A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens Bioelectron 72:31–36. https://doi.org/10.1016/j.bios.2015.04.077

    Article  CAS  Google Scholar 

  43. Luo W, Zhang S, Meng Q, Zhou J, Jin R, Long X, Tang YP, Guo H (2021) A two-photon multi-emissive fluorescent probe for discrimination of Cys and Hcy/GSH via an aromatic substitution-rearrangement. Talanta 224:121833. https://doi.org/10.1016/j.talanta.2020.121833

    Article  CAS  Google Scholar 

  44. Wang S, Wang M, Liu Y, Meng X, Ye Y, Song X, Liang Z (2021) Novel D-π-A conjugated microporous polymer as visible light-driven oxidase mimic for efficient colorimetric detection of glutathione. Sens Actuators B Chem 326:128808. https://doi.org/10.1016/j.snb.2020.128808

    Article  CAS  Google Scholar 

  45. Li L, Shi L, Jia J, Eltayeb O, Lu W, Tang Y, Dong C, Shuang S (2020) Dual photoluminescence emission carbon dots for ratiometric fluorescent GSH sensing and cancer cell recognition. ACS Appl Mater Interfaces 12(16):18250–18257. https://doi.org/10.1021/acsami.0c00283

    Article  CAS  Google Scholar 

  46. Li J, Jiao L, Xu W, Yan H, Chen G, Wu Y, Hu L, Gu W (2021) Cobalt oxyhydroxide nanosheets integrating with metal indicator enable sensitive detection of glutathione. Sens Actuators B Chem 329:129247. https://doi.org/10.1016/j.snb.2020.129247

    Article  CAS  Google Scholar 

  47. Yan X, Song Y, Zhu C, Song J, Du D, Su X, Lin Y (2016) Graphene quantum dot-MnO2 nanosheet based optical sensing platform: a sensitive fluorescence “Turn Off-On” nanosensor for glutathione detection and intracellular imaging. ACS Appl Mater Interfaces 8(34):21990–21996. https://doi.org/10.1021/acsami.6b05465

    Article  CAS  Google Scholar 

  48. Chen Y, Cong H, Shen Y, Yu B (2020) Biomedical application of manganese dioxide nanomaterials. Nanotechnology 31(20):202001. https://doi.org/10.1088/1361-6528/ab6fe1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Science Foundation of Shanxi Province of China (201901D111210), Key Research Project of Science and Technology in JinZhong-Social Development Projects (Y213003), Special Project of Lvliang for Introduced High-level Science and Technology Talents (2021RC-2-33), National Natural Science Foundation of China (21874087), and Transverse Scientific Research Project of Shanxi University (2F022019056) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

CC and XY were involved in the conceptualization, methodology, investigation, formal analysis, data curation, and writing—original draft preparation. XY contributed to the resources, visualization, and investigation. CD contributed to the resources, and visualization. WB was involved in the conceptualization, supervision, funding acquisition, validation, and writing—original draft preparation. MMFC contributed to the writing—review and editing.

Corresponding author

Correspondence to Wei Bian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, C., Yang, X., Yang, X. et al. An ultrasensitive MnO2-S,O-doped g-C3N4 nanoprobe for “turn-on” detection of glutathione and cell imaging. J Mater Sci 57, 7909–7922 (2022). https://doi.org/10.1007/s10853-022-07160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07160-5

Navigation