Skip to main content

Advertisement

Log in

Surfactant intercalated polypyrrole-exfoliated graphene oxide hybrid thin film symmetric supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surfactant intercalated polypyrrole-exfoliated graphene oxide hybrid thin films were successfully electrodeposited as binder-free electrodes for supercapacitors. The superior electrochemical activity was achieved by tuning the specified morphology of the composite films through varying the concentration of the anionic surfactant sodium lauryl sulfate (SLS) during electrochemical deposition. Here, the surfactant acted as a stabilizing agent and a supporting electrolyte to achieve a uniform coating. Although all the composite films exhibited remarkable improvement in electrochemical performance upon sulfonation, the best performance was observed for 0.025 M SLS-derived electrodes. The fabricated symmetric supercapacitor (SC) achieved an outstanding specific capacitance of 494 F g−1 at 1 A g−1, with a specific energy of 17.1 W h kg−1 at 325 W kg−1 specific power and maintained 99% coulombic efficiency over 5000 GCD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  CAS  Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications, 1st edn. Kluwer Academic/ Plenum, New York

    Book  Google Scholar 

  4. Majumder M, Choudhary RB, Thakur AK, Karbhal I (2017) Impact of rare-earth metal oxide (Eu2O3) on the electrochemical properties of a polypyrrole/CuO polymeric composite for supercapacitor applications. RSC Adv 7:20037–20048. https://doi.org/10.1039/c7ra01438d

    Article  CAS  Google Scholar 

  5. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269. https://doi.org/10.1021/cr020730k

    Article  CAS  Google Scholar 

  6. Fan LQ, Liu GJ, Wu JH, Liu L, Lin JM, Wei YL (2014) Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochim Acta 137:26–33. https://doi.org/10.1016/j.electacta.2014.05.137

    Article  CAS  Google Scholar 

  7. Gu Y, Fan QL, Huang JL, Geng CL, Lin JM, Huang ML, Wu JH (2019) N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J Power Sources 425:60–68. https://doi.org/10.1016/j.jpowsour.2019.03.123

    Article  CAS  Google Scholar 

  8. Dhawale DS, Mane GP, Joseph S, Talapaneni SN, Anand C, Mano A, Vinu A (2015) Cobalt oxide functionalized nanoporous carbon electrodes and their excellent supercapacitive performance. RSC Adv 5:13930–13940. https://doi.org/10.1039/C4RA14041A

    Article  CAS  Google Scholar 

  9. Wang YL, Fan LQ, Sun SJ, Chen JJ, Wu ZX, Zhu TT, Wu JH (2022) Ti3C2Tx MXene supported SnO2 quantum dots with oxygen vacancies as anode for Li-ion capacitors. Chem Eng J 428:131993. https://doi.org/10.1016/j.cej.2021.131993

    Article  CAS  Google Scholar 

  10. A. R. Athira, V. M. Vimuna, K. Vidya, T. S. Xavier, (2018) 2nd International Conference on Condensed Matter & Applied Physics, Bikaner, India, Nov 24–25, 2017, AIP Conference Proceedings1953, American Institute of Physics: New York https://doi.org/10.1063/1.5032476

  11. Zhu L, Hao C, Wang X, Guo Y (2020) Fluffy cotton-Like GO/Zn–Co–Ni layered double hydroxides form from a sacrificed template GO/ZIF-8 for high performance asymmetric supercapacitors. ACS Sustain Chem Eng 8:11618–11629. https://doi.org/10.1021/acssuschemeng.0c02916

    Article  CAS  Google Scholar 

  12. Huang C, Ding Y, Hao C, Zhou S, Wang X, Gao H, Wu J (2019) PVP-assisted growth of Ni-Co oxide on N-doped reduced graphene oxide with enhanced pseudocapacitive behavior. Chem Eng J 378:122202. https://doi.org/10.1016/j.cej.2019.122202

    Article  CAS  Google Scholar 

  13. Fong KD, Wang T (2017) Multidimensional performance optimization of Conducting polymer-based supercapacitor electrodes, Sustain. Energy Fuels 1:1857–1874. https://doi.org/10.1039/C7SE00339K

    Article  CAS  Google Scholar 

  14. Horn MR, Williams F, Dubal D, MacLeod J, Motta N (2020) Simple method for estimating the surface area of layered graphene-based thin films. Chemsuschem 13:1613–1620. https://doi.org/10.1002/cssc.201901928

    Article  CAS  Google Scholar 

  15. Zhou Q, Zhu D, Ma X, Mo D, Jiang F, Xu J, Zhou W (2016) PEDOT: PSS-assisted polyindole hollow nanospheres modified carbon cloth as high performance electrochemical capacitor electrodes. Electrochim Acta 212:662–670. https://doi.org/10.1016/j.electacta.2016.07.064

    Article  CAS  Google Scholar 

  16. Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438. https://doi.org/10.1016/j.nanoen.2016.02.047

    Article  CAS  Google Scholar 

  17. Yussuf A, Al-Saleh M, Al-Enezi S, Abraham G (2018) Synthesis, characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological properties. Int J Polym Sci 8:4191747. https://doi.org/10.1155/2018/4191747

    Article  CAS  Google Scholar 

  18. Jiang Y, Hu C, Cheng H, Li C, Xu T, Zhao Y, Shao H, Qu L (2016) Spontaneous, straightforward fabrication of partially reduced graphene oxide–polypyrrole composite films for versatile actuators. ACS Nano 10:4735–4741. https://doi.org/10.1021/acsnano.6b01233

    Article  CAS  Google Scholar 

  19. Patil DS, Shaikh JS, Dalavi DS, Kalagi SS, Patil PS (2011) Chemical synthesis of highly stable PVA/PANI films for supercapacitor application. Mater Chem Phys 128:449–455. https://doi.org/10.1016/j.matchemphys.2011.03.029

    Article  CAS  Google Scholar 

  20. Fu SL, Zhou Q, Wu Y (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854. https://doi.org/10.1039/c7cs00205j

    Article  CAS  Google Scholar 

  21. Zhao C, Zheng W, Wang X, Zhang H, Cui X, Wang H (2013) Ultrahigh capacitive performance from both Co(OH) 2 /graphene electrode and K 3 Fe(CN) 6 electrolyte. Sci Rep 3:3–8. https://doi.org/10.1038/srep02986

    Article  Google Scholar 

  22. Jiao S, Li T, Zhang Y, Xiong C, Zhao T (2016) A three-dimensional vertically aligned carbon nanotube /polyaniline composite as a supercapacitor electrode. RSC Adv 6:110592–110599. https://doi.org/10.1039/C6RA17674G

    Article  CAS  Google Scholar 

  23. Zhou H, Han G, Xiao Y, Chang Y, Zhai HJ (2014) Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sources 263:259–267. https://doi.org/10.1016/j.jpowsour.2014.04.039

    Article  CAS  Google Scholar 

  24. Shinde SS, Gund GS, Dubal DP, Jambure SB, Lokhande CD (2014) Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim Acta 119:1–10. https://doi.org/10.1016/j.electacta.2013.10.174

    Article  CAS  Google Scholar 

  25. Barakzehi M, Montazer M, Sharif F, Norby T, Chatzitakis A (2019) A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite. Electrochim Acta 305:187–196. https://doi.org/10.1016/j.electacta.2019.03.058

    Article  CAS  Google Scholar 

  26. Pruna AI, Rosas-Laverde NM, Busquets Mataix D (2020) Effect of deposition parameters on electrochemical properties of polypyrrole-graphene oxide films. Materials 13:1–12. https://doi.org/10.3390/ma13030624

    Article  CAS  Google Scholar 

  27. Kulandaivalu S, Suhaimi N, Sulaiman Y (2019) Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-41203-3

    Article  CAS  Google Scholar 

  28. Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671. https://doi.org/10.1021/cm101132g

    Article  CAS  Google Scholar 

  29. Chen J, Wang Y, Cao J, Liu Y, Zhou Y, Ouyang JH, Jia D (2017) facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film. ACS Appl Mater Interfaces 9:19831–19842. https://doi.org/10.1021/acsami.7b03786

    Article  CAS  Google Scholar 

  30. Ning D, Zhang A, Murtaza M, Wu H (2019) Effect of surfactants on the electrodeposition of Cu-TiO2 composite coatings prepared by jet electrodeposition. J Alloys Compd 777:1245–1250. https://doi.org/10.1016/j.jallcom.2018.11.077

    Article  CAS  Google Scholar 

  31. Wei D, Zhu J, Luo L, Huang H, Li L, Yu X (2020) Fabrication of poly (vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. J Mater Sci 55:11779–11791. https://doi.org/10.1007/s10853-020-04833-x

    Article  CAS  Google Scholar 

  32. Athira AR, Deepthi S, Xavier TS (2021) Impact of an anionic surfactant on the enhancement of the capacitance characteristics of polyaniline-wrapped graphene oxide hybrid composite. Bull Mater Sci 44:1–10. https://doi.org/10.1007/s12034-021-02481-8

    Article  CAS  Google Scholar 

  33. Sarmah D, Kumar A (2019) Ion beam modified molybdenum disulfide-reduced graphene oxide/polypyrrole nanotubes ternary nanocomposite for hybrid supercapacitor electrode. Electrochim Acta 312:392–410. https://doi.org/10.1016/j.electacta.2019.04.174

    Article  CAS  Google Scholar 

  34. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  35. Zhou W, Ma X, Jiang F, Zhu D, Xu J, Lu B, Liu C (2014) Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochim Acta 138:270–277. https://doi.org/10.1016/j.electacta.2014.06.123

    Article  CAS  Google Scholar 

  36. Wu J, Zhou W, Jiang F, Chang Y, Zhou Q, Li D, Du Y (2018) Three-dimensional porous carbon derived from polyindole hollow nanospheres for high-performance supercapacitor electrode. ACS Appl Energy Mater 1:4572–4579. https://doi.org/10.1021/acsaem.8b00722

    Article  CAS  Google Scholar 

  37. Tong L, Gao M, Jiang C, Cai K (2019) Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. J Mater Chem A 7:10751–10760. https://doi.org/10.1039/C9TA01856E

    Article  CAS  Google Scholar 

  38. Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300. https://doi.org/10.1039/c2jm16699b

    Article  CAS  Google Scholar 

  39. Li H, Liu L, Yang F (2013) Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup. J Mater Chem A 1:3446–3453. https://doi.org/10.1039/c3ta00166k

    Article  CAS  Google Scholar 

  40. Robinson BJ, Bailey SWD, O’Driscoll LJ, Visontai D, Welsh DJ, Mostert AB, Lambert C (2017) Formation of two-dimensional micelles on graphene: multi-scale theoretical and experimental study. ACS Nano 11:3404–3412. https://doi.org/10.1021/acsnano.7b01071

    Article  CAS  Google Scholar 

  41. Politi S, Carcione R, Tamburri E, Matassa R, Lavecchia T, Angjellari M, Terranova ML (2018) Graphene platelets from shungite rock modulate electropolymerization and charge storage mechanisms of soft-template synthetized polypyrrole-based nanocomposites. Sci Rep 8:1–18. https://doi.org/10.1038/s41598-018-35415-2

    Article  CAS  Google Scholar 

  42. Wang L, Liu F, Jin C, Zhang T, Yin Q (2014) Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties. RSC Adv 4:46187–46193. https://doi.org/10.1039/c4ra07774a

    Article  CAS  Google Scholar 

  43. Cao J, Wang Y, Chen J, Li X, Walsh FC, Ouyang JH, Zhou Y (2015) Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. J Mater Chem A 3:14445–14457. https://doi.org/10.1039/C5TA02920A

    Article  CAS  Google Scholar 

  44. Paulson BM, Joby TK, Raphael VP, Shaju KS (2018) Prevention of reinforcement corrosion in concrete by sodium lauryl sulphate: electrochemical and gravimetric investigations. Int J Corros 10:9471694. https://doi.org/10.1155/2018/9471694

    Article  CAS  Google Scholar 

  45. Jiang Y, Hu C, Cheng H, Li C, Xu T, Zhao Y, Qu L (2016) Spontaneous, straightforward fabrication of partially reduced graphene oxide-polypyrrole composite films for versatile actuators. ACS Nano 10:4735–4741. https://doi.org/10.1021/acsnano.6b01233

    Article  CAS  Google Scholar 

  46. Zhou Q, Zhu D, Ma X, Xu J, Zhou W, Zhao F (2016) High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Adv 6:29840–29847. https://doi.org/10.1039/C5RA27375G

    Article  CAS  Google Scholar 

  47. Wang Y, Yang J, Wang L, Du K, Yin Q, Yin Q (2017) Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interfaces 9:20124–20131. https://doi.org/10.1021/acsami.7b05357

    Article  CAS  Google Scholar 

  48. Xu C, Puente-Santiago AR, Rodriguez-Padron D, Caballero A, Balu AM, Romero AA, Luque R (2019) Controllable design of polypyrrole-iron oxide nanocoral architectures for supercapacitors with ultrahigh cycling stability. ACS Appl Energy Mater 2:2161–2168. https://doi.org/10.1021/acsaem.8b02167

    Article  CAS  Google Scholar 

  49. Liu A, Li C, Bai H, Shi G (2010) Electrochemical deposition of polypyrrole/sulfonated graphene composite films. J Phys Chem C 114:22783–22789. https://doi.org/10.1021/jp108826e

    Article  CAS  Google Scholar 

  50. Singh AK, Sarkar D, Karmakar K, Mandal K, Khan GG (2016) High-performance supercapacitor electrode based on cobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes. ACS Appl Mater Interfaces 8:20786–20792. https://doi.org/10.1021/acsami.6b05933

    Article  CAS  Google Scholar 

  51. Li GR, Feng ZP, Zhong JH, Wang ZL, Tong YX (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43:2178–2183. https://doi.org/10.1021/ma902317k

    Article  CAS  Google Scholar 

  52. Chen W, Rakhi RB, Alshareef HN (2013) Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures. J Phys Chem C 117:15009–15019. https://doi.org/10.1021/jp405300p

    Article  CAS  Google Scholar 

  53. Grote F, Lei Y (2014) A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 10:63–70. https://doi.org/10.1016/j.nanoen.2014.08.019

    Article  CAS  Google Scholar 

  54. Luo J, Ma Q, Gu H, Zheng Y, Liu X (2015) Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor. Electrochim Acta 173:184–192. https://doi.org/10.1016/j.electacta.2015.05.053

    Article  CAS  Google Scholar 

  55. Liang A, Li D, Zhou W, Wu Y, Ye G, Wu J, Du Y (2018) Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. J Electroanal Chem 824:136–146. https://doi.org/10.1016/j.jelechem.2018.07.040

    Article  CAS  Google Scholar 

  56. Liang A, Zhang Y, Jiang F, Zhou W, Xu J, Hou J, Duan X (2019) Electrochemical self-assembly of a 3D interpenetrating porous network PEDOT-PEG-WS2 nanocomposite for high-efficient energy storage. J Phys Chem C 123:25428–25436. https://doi.org/10.1021/acs.jpcc.9b05227

    Article  CAS  Google Scholar 

  57. Zhou W, Xu J (2016) High-operating-voltage all-solid-state symmetrical supercapacitors based on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films treated by organic solvents. Electrochim Acta 222:1895–1902. https://doi.org/10.1016/j.electacta.2016.11.181

    Article  CAS  Google Scholar 

  58. Bello A, Barzegar F, Madito MJ, Momodu DY, Khaleed AA, Masikhwa TM, Manyala N (2016) Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes. RSC Adv 6:68141–68149. https://doi.org/10.1039/c6ra12690a

    Article  CAS  Google Scholar 

  59. Zhou H, Zhai HJ, Zhi X (2018) Enhanced electrochemical performances of polypyrrole/carboxyl graphene/carbon nanotubes ternary composite for supercapacitors. Electrochim Acta 290:1–11. https://doi.org/10.1016/j.electacta.2018.09.039

    Article  CAS  Google Scholar 

  60. Asen P, Shahrokhian S (2017) A high performance supercapacitor based on graphene/polypyrrole/Cu2O–Cu (OH) 2 ternary nanocomposite coated on nickel foam. J Phys Chem C 121:6508–6519. https://doi.org/10.1021/acs.jpcc.7b00534

    Article  CAS  Google Scholar 

  61. Wang W, Sadak O, Guan J, Gunasekaran S (2020) Facile synthesis of graphene paper/polypyrrole nanocomposite as electrode for flexible solid-state supercapacitor. J Energy Storage 30:101533. https://doi.org/10.1016/j.est.2020.101533

    Article  Google Scholar 

  62. Yang L, Shi M, Jiang J, Liu Y, Yan C, Liu H, Guo Z (2019) Heterogeneous interface induced formation of balsam pear-like PPy for high performance supercapacitors. Mater Lett 244:27–30. https://doi.org/10.1016/j.matlet.2019.02.064

    Article  CAS  Google Scholar 

  63. Prasankumar T, Vigneshwaran J, Abraham S, Jose SP (2018) 3D structures of graphene oxide and graphene analogue MoS2 with polypyrrole for supercapacitor electrodes. Mater Lett 238:121–125. https://doi.org/10.1016/j.matlet.2018.12.002

    Article  CAS  Google Scholar 

  64. AlDream J, Zequine C, Siam K, Kahol PK, Mishra SR, Gupta RK (2019) Electrochemical properties of graphene oxide nanoribbons/polypyrrole nanocomposites. C 5(2):18

    CAS  Google Scholar 

  65. Mondal S, Rana U, Malik S (2017) Reduced graphene Oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121(14):7573–7583. https://doi.org/10.1021/acs.jpcc.6b10978

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-FIST, State Centre for Advanced Instrumentation, Govt. College for Women, Kerala Government project "Performance Linked Encouragement for Academic Studies (PLEASE)," and the Department of Optoelectronics for analysis support. One of the authors (1A R Athira) acknowledges the University of Kerala for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Xavier.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3931 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, A.R., Vimuna, V.M., Tomy, M. et al. Surfactant intercalated polypyrrole-exfoliated graphene oxide hybrid thin film symmetric supercapacitor. J Mater Sci 57, 6749–6762 (2022). https://doi.org/10.1007/s10853-022-07075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07075-1

Navigation