Skip to main content
Log in

Changed pattern of SERS hotspots by Ag nanoparticle growth under magnetic field for biomarker detection

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As an important marker of Hepatocellular carcinoma (HCC), AFP-L3 has attracted attention. In this study, the surface-plasmon-assisted Ag nanoparticles symmetrical growth technology under magnetic field is used to fabricate the six-nanohole nanojar array containing Ag nanoparticles as the sensing substrate. The displacement of SERS signal of the optimized structure is used to detect HCC marker AFP-L3. This method has good stability, high accuracy and has great potential in the early diagnosis of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Toudert J, Simonot L, Camelio S, Babonneau D (2012) Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances. Phy Rev B 86:045415. https://doi.org/10.1103/PhysRevB.86.045415

    Article  CAS  Google Scholar 

  2. Hutte E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. https://doi.org/10.1002/adma.200400271

    Article  CAS  Google Scholar 

  3. Oh SY, Heo NS, Bajpai VK, Jang S, Ok G, Cho Y, Huh YS (2019) Development of a cuvette-based LSPR sensor chip using a plasmonically active transparent strip. Front Bioeng Biotech 7:299. https://doi.org/10.3389/fbioe.2019.00299

    Article  Google Scholar 

  4. Borges JN, Rodrigues MS, Kubart T, Kumar S, Leifer K, Evaristo M, Vaz F (2015) Thin films composed of gold nanoparticles dispersed in a dielectric matrix: the influence of the host matrix on the optical and mechanical responses. Thin Solid Films 596:8–17. https://doi.org/10.1016/j.tsf.2015.08.058

    Article  CAS  Google Scholar 

  5. Torrell M, Machado P, Cunha L, Figueiredo NM, Oliveira JC, Louro C, Vaz F (2010) Development of new decorative coatings based on gold nanoparticles dispersed in an amorphous TiO2 dielectric matrix. Surf Coat Technol 204:1569–1575. https://doi.org/10.1016/j.surfcoat.2009.10.003

    Article  CAS  Google Scholar 

  6. Pelton M, Aizpurua J, Bryant G (2008) Metal−nanoparticle plasmonics. Laser Photon Rev 2:136–159. https://doi.org/10.1002/lpor.200810003

    Article  CAS  Google Scholar 

  7. Ai B, Wang Z, Mohwald H, Zhang G (2017) Plasmonic nanochemistry based on nanohole array. ACS Nano 11:12094–12102. https://doi.org/10.1021/acsnano.7b04887

    Article  CAS  Google Scholar 

  8. Lizmarzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41. https://doi.org/10.1021/la0513353

    Article  CAS  Google Scholar 

  9. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing−A review. Anal Chim Acta 706:8–24. https://doi.org/10.1016/j.aca.2011.08.020

    Article  CAS  Google Scholar 

  10. Murugan E, Santhosh Kumar S, Reshna KM, Govindaraju S (2019) Highly sensitive, stable g-CN decorated with AgNPs for SERS sensing of toluidine blue and catalytic reduction of crystal violet. J Mater Sci 54(7):5294–5310. https://doi.org/10.1007/s10853-018-3184-5

    Article  CAS  Google Scholar 

  11. Santhoshkumar S, Murugan E (2021) Rationally designed SERS AgNPs/GO/g-CN nanohybrids to detect methylene blue and Hg2+ ions in aqueous solution. Appl Surf Sci 553:149544. https://doi.org/10.1016/j.apsusc.2021.149544

    Article  CAS  Google Scholar 

  12. Baffou G, Quidant R (2014) Nanoplasmonics for chemistry. Chem Soc Rev 43:3898–3907. https://doi.org/10.1039/C3CS60364D

    Article  CAS  Google Scholar 

  13. Zhu AN, Zhang F, Gao RX, Zhao XY, Chen L, Zhang YJ, Wang YX (2019) Increasing polarization−dependent SERS effects by optimizing the axial symmetry of plasmonic nanostructures. Appl Surf Sci 494:87–93. https://doi.org/10.1016/j.apsusc.2019.07.182

    Article  CAS  Google Scholar 

  14. Hatab NA, Hsueh CH, Gaddis AL, Retterer ST, Li JH, Eres G, Zhang ZY, Gu BH (2010) Free−standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett 10:4952–4955. https://doi.org/10.1021/nl102963g

    Article  CAS  Google Scholar 

  15. Andrea CD, Bochterle J, Toma A, Huck C, Neubrech F, Messina E, Fazio B, Marago OM, Fabrizio ED et al (2013) Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. ACS Nano 7:3522–3531. https://doi.org/10.1021/nn4004764

    Article  CAS  Google Scholar 

  16. Im H, Bantz KC, Indquist NC, Haynes CL, Oh SH (2010) Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett 10:2231–2236. https://doi.org/10.1021/nl1012085

    Article  CAS  Google Scholar 

  17. Qian L, Mookherjee R (2011) Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res 4:1117–1128. https://doi.org/10.1007/s12274-011-0159-0

    Article  CAS  Google Scholar 

  18. Yang M, Alvarez−Puebla R, Kim HS, Aldeanueva−Potel P, Liz−Marzan LM, Kotov N (2010) A SERS−active gold lace nanoshellś with built-in hotspots. Nano Lett 10:4013–4019. https://doi.org/10.1021/nl101946c

    Article  CAS  Google Scholar 

  19. Guo Q, Zhang C, Wei C, Xu M, Yuan Y, Gu R, Yao J (2016) Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field. Spectrochim Acta A 152:336–342. https://doi.org/10.1016/j.saa.2015.07.092

    Article  CAS  Google Scholar 

  20. Sato Y, Fujimori T, Nakamura H (2013) Bioimaging in developmental biology. Dev Growth Differ 55:377. https://doi.org/10.1111/dgd.12068

    Article  Google Scholar 

  21. Haes J, Duyne RPV (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920–930. https://doi.org/10.1007/s00216-004-2708-9

    Article  CAS  Google Scholar 

  22. Zhao J, Zhang X, Yonzon CR, Haes AJ, Duyne RPV (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1:219–228. https://doi.org/10.2217/17435889.1.1.219

    Article  CAS  Google Scholar 

  23. Timko P, Dvir T, Kohane DS (2010) Remotely triggerable drug delivery systems. Adv Mater 22:4925–4943. https://doi.org/10.1002/adma.201002072

    Article  CAS  Google Scholar 

  24. Huang X, Jain PK, El−Sayed IH, EL−Sayed MA (2008) Plasmonic PTT therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228. https://doi.org/10.1007/s10103-007-0470-x

    Article  Google Scholar 

  25. Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthemia using metal nanoparticles. Adv Drug Delivery Rev 62:339–345. https://doi.org/10.1016/j.addr.2009.11.006

    Article  CAS  Google Scholar 

  26. Zhu Q, Zhang XL, Wang YX, Zhu AN, Gao RX, Zhao XY, Chen L (2019) Controlling the growth locations of Ag nanoparticles at nanoscale by shifting LSPR hotspots. Nanomaterials 9:1553. https://doi.org/10.3390/nano9111553

    Article  CAS  Google Scholar 

  27. Choi J, Park Y, Kim JH, Kim HS (2012) Evaluation of revisited fucosylated alpha−fetoprotein (AFP-L3) with an autoanalyzer μTAS in a clinical laboratory. Clin Chim Acta 413:170–174. https://doi.org/10.1016/j.cca.2011.09.015

    Article  CAS  Google Scholar 

  28. Matsuda M, Asakawa M, Amemiya H, Fujii H (2011) Lens culinaris agglutinin-reactivefraction of AFP is a useful prognostic biomarker for survival after repeat hepaticresection for HCC. J Gastroen Hepatol 26:731–738. https://doi.org/10.1111/j.1440-1746.2010.06532.x

    Article  CAS  Google Scholar 

  29. Ma H, Sun X, Chen L, Cheng W, Han XX, Zhao B, He C (2017) Multiplex immunochips for high-accuracy detection of AFP-L3% based on surface-enhanced Raman scattering: Implications for early liver cancer diagnosis. Anal Chem 89:8877–8883. https://doi.org/10.1021/acs.analchem.7b01349

    Article  CAS  Google Scholar 

  30. Li Y, Zhong Z, Chai Y, Song Z, Zhuo Y, Su H, Liu S, Wang D, Yuan R (2012) Simultaneous electrochemical immunoassay of three liver cancer biomarkers using distinguishable redox probes as signal tags and gold nanoparticles coated carbon nanotubes as signal enhancers. Chem Commun 48:537–539. https://doi.org/10.1039/c1cc14886a

    Article  CAS  Google Scholar 

  31. Ma H, Sun X, Chen L, Han XX, Zhao B, Lu H, He C (2018) Antibody−Free discrimination of protein biomarkers in human serum based on surface-enhanced Raman spectroscopy. Anal Chem 90:12342–12346. https://doi.org/10.1021/acs.analchem.8b03701

    Article  CAS  Google Scholar 

  32. Gao RX, Zhang YJ, Zhang F, Guo S, Wang YX, Chen L, Yang JH (2018) SERS polarization-dependent effects for an ordered 3D plasmonic tilted silver nanorod array. Nanoscale 10:8106–8114. https://doi.org/10.1039/c8nr01198b

    Article  CAS  Google Scholar 

  33. Zhu AN, Zhao XY, Cheng MY, Chen L, Wang YX, Zhang XL, Zhang YJ, Zhang XF (2019) Nanohoneycomb surface-enhanced raman spectroscopy-active chip for the determination of biomarkers of hepatocellular carcinoma. ACS Appl Mater Interfaces 11:44617–44623. https://doi.org/10.1021/acsami.9b16288

    Article  CAS  Google Scholar 

  34. Zhu AN, Gao RX, Zhao XY, Zhang F, Zhang XL, Yang JH, Zhang YJ, Chen L et al (2019) Site-selective growth of Ag nanoparticles controlled by localized surface plasmon resonance of nanobowl arrays. Nanoscale 11:6576–6583. https://doi.org/10.1039/c8nr10277e

    Article  CAS  Google Scholar 

  35. Nguyen T, Thanh K, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630. https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  36. Ru E, Blackie E, Meyer M, Etchegoin P (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803. https://doi.org/10.1021/jp0687908

    Article  CAS  Google Scholar 

  37. Zhang M, Zhao A, Sun H, Guo H, Wang D, Li D, Gan Z, Tao W (2011) Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates. J Mater Chem 21:18817–18824. https://doi.org/10.1039/c1jm12831k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61675090, 61575080 and 51901060), Zhejiang Provincial Key Research and Development Program (Nos. 2019C01121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaxin Wang or Xiaolong Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1770 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, X., Zhu, Q. et al. Changed pattern of SERS hotspots by Ag nanoparticle growth under magnetic field for biomarker detection. J Mater Sci 57, 6943–6952 (2022). https://doi.org/10.1007/s10853-022-07026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07026-w

Navigation