Skip to main content

Advertisement

Log in

Biofunctionalization of graphene and its two-dimensional analogues and synthesis of biomimetic materials: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have become a “rising star” in the eyes of scientists because of their designability, manipulability, and ease of functionalization. When the 2D materials are modified by biomolecules in a covalent or non-covalent ways, some properties of the materials surface will change accordingly, making them have the properties of both the material and the biological macromolecules used for modification. Biomolecules attached to the surface of 2D materials can improve the bioactivity and biocompatibility of the obtained biocomposites, which makes the application of 2D materials more extensive. In this work, we introduce the interaction processes of the graphene and its derivatives, transition metal dichalcogenide materials (TMDs), and hexagonal boron nitride (h-BN) with biological macromolecules such as DNA and proteins. In addition, we also summarize the method of synthesizing bionic materials by using the composite materials with biofunctions and their important applications in biomineralization, biomedicine, environmental engineering, and materials engineering. We hope that this review can help readers to make sense of the principles and methods of biofunctionalization of 2D materials, understand the interactions between 2D materials and biomolecules at the molecular level, design biofunctionalized 2D materials to obtain bionanomaterials with special properties, and promote the applications and research in various fields such as biomedicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

modified by Avidin–biotin, peptides, NAS, proteins, aptamers, small molecules, bacteria, and cells. Reproduced with permission from reference [34]. Copyright 2011, Elsevier

Figure 2

Reproduced with permission from reference [42]. Copyright 2020, Multidisciplinary Digital Publishing Institute. c The sensing platform constructed by π–π stacking between the probe and rGO. Reproduced with permission from reference [48]. Copyright 2013, American Chemical Society. d Two peptides and eight peptides are distributed on the surface of the graphene and parallel to the edge of the graphene. Reproduced with permission from reference [53]. Copyright 2013, World Scientific

Figure 3

Reproduced with permission from reference [67]. Copyright 2017, Elsevier. b The optimum adsorption configurations of Phe, Tyr, and Trp for maximum adsorption on MoS2 surface. Reproduced with permission from reference [72]. Copyright 2017, Elsevier. c Two optimal adsorption configurations of Phe, Tyr, and Trp on Au-modified MoS2. Reproduced with permission from reference [72]. Copyright 2017, Elsevier. d The preparation of PDA-modified MoS2, and then modified with polyethylene glycol, and finally constructed the biosensor. Reproduced with permission from reference [76]. Copyright 2019, Academic Press Inc

Figure 4

Reproduced with permission from reference [83]. Copyright 2011, Royal Society of Chemistry. b The process of CMC and SPI biofunctionalization of h-BN and the process of transporting tea tree oil (TOO). Reproduced with permission from reference [88]. Copyright 2020, American Chemical Society. c The adsorption process of PA with α-helical conformation and BN flakes. Reproduced with permission from reference [89]. Copyright 2016, American Chemical Society

Figure 5

Reproduced with permission from reference [96]. Copyright 2012, American Chemical Society

Figure 6

Reproduced with permission from reference [112]. Copyright 2013, American Chemical Society. b Schematic representation for the synthesis of (3) GO–PNF nanohybrid and (4) GO-PNF-HA minerals. Reproduced with permission from reference [114]. Copyright 2015, Elsevier

Figure 7

Reproduced with permission from reference [133]. Copyright 2017, American Chemical Society. b The formation of GON/CS/CS-dmma and the release of DOX. Reproduced with permission from reference [134]. Copyright 2018, American Chemical Society

Figure 8

Reproduced with permission from reference [137]. Copyright 2013, Elsevier. c GO and PDA underwent self-polymerization to obtain PDA-rGO. Reproduced with permission from reference [138]. Copyright 2019, Elsevier

Similar content being viewed by others

References

  1. Cai XK, Luo YT, Liu BL, Cheng HM (2018) Preparation of 2D material dispersions and their applications. Chem Soc Rev 47:6224–6266. https://doi.org/10.1039/C8CS00254A

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  3. Novoselov KS, Jing D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. P Natl Acad Sci Usa 102:10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  4. Liu HY, Xi PX, Xie GQ et al (2012) Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116:3334–3341. https://doi.org/10.1021/jp2102226

    Article  CAS  Google Scholar 

  5. Yousefi N, Lu XL, Elimelech M, Tufenkji N (2019) Environmental performance of graphene-based 3D macrostructures. Nat Nanotechnol 14:107–119. https://doi.org/10.1038/s41565-018-0325-6

    Article  CAS  Google Scholar 

  6. Zhang Y, Nayak TR, Hong H, Cai WB (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4:3833–3842. https://doi.org/10.1039/c2nr31040f

    Article  CAS  Google Scholar 

  7. Chen Y, Yang GZ, Liu B, Kong H, Xiong Z, Guo L, Wei G (2022) Biomineralization of ZrO2 nanoparticles on graphene oxide-supported peptide/cellulose binary nanofibrous membranes for high-performance removal of fluoride ions. Chem Eng J 430:132721–132731. https://doi.org/10.1016/j.cej.2021.132721

    Article  CAS  Google Scholar 

  8. Liu B, Jiang M, Zhu DZ, Zhang JM, Wei G (2022) Metal-organic frameworks functionalized with nucleic acids and amino acids for structure- and function-specific applications: a tutorial review. Chem Eng J 428:131118–131135. https://doi.org/10.1016/j.cej.2021.131118

    Article  CAS  Google Scholar 

  9. Palmieri V, Papi M (2020) Can graphene take part in the fight against COVID-19? Nano Today 33:100883–100886. https://doi.org/10.1016/j.nantod.2020.100883

    Article  CAS  Google Scholar 

  10. Olabi AG, Abdelkareem MA, Wilberforce T, Sayed ET (2021) Application of graphene in energy storage device - a review. Renew Sust Energ Rev 135:110026–110045. https://doi.org/10.1016/j.rser.2020.110026

    Article  CAS  Google Scholar 

  11. Fan FR, Wang RX, Zhang H, Wu WZ (2021) Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem Soc Rev 50:10983–11031. https://doi.org/10.1039/C9CS00821G

    Article  CAS  Google Scholar 

  12. Zheng W, Liu XH, Xie JY, Lu GC, Zhang J (2021) Emerging van der Waals junctions based on TMDs materials for advanced gas sensors. Coordin Chem Rev 447:214151. https://doi.org/10.1016/j.ccr.2021.214151

    Article  CAS  Google Scholar 

  13. Lin YX, Yu MX, Li XY et al (2021) Designed borophene/TMDs hybrid catalysts for enhanced hydrogen evolution reaction. J Mater Chem C. https://doi.org/10.1039/D1TC04197E

    Article  Google Scholar 

  14. Hassan J, Naz S, Haider A et al (2021) h-BN nanosheets doped with transition metals for environmental remediation; a DFT approach and molecular docking analysis. Mater Sci Eng B-Adv 272:115365–115378. https://doi.org/10.1016/j.mseb.2021.115365

    Article  CAS  Google Scholar 

  15. Yanar H, Purcek G, Demirtas M, Ayar HH (2022) Effect of hexagonal boron nitride (h-BN) addition on friction behavior of low-steel composite brake pad material for railway applications. Tribol Int 165:107274–107288. https://doi.org/10.1016/j.triboint.2021.107274

    Article  CAS  Google Scholar 

  16. Herrera-Reinoza N, Santos ACD, Lima LHD, Landers R, Siervo AD (2021) Atomically precise bottom-up synthesis of h-BNC: graphene doped with h-BN nanoclusters. Chem Mater 33:2871–2882. https://doi.org/10.1021/acs.chemmater.1c00081

    Article  CAS  Google Scholar 

  17. Lee W, Liu Y, Lee YJ et al (2018) Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat Commum 9:1417–1425. https://doi.org/10.1038/s41467-018-03870-0

    Article  CAS  Google Scholar 

  18. Salazar N, Marquez C, Gamiz F (2021) Synthesis of graphene and other two-dimensional materials. Mater Nanophotonics 2D:1–79. https://doi.org/10.1016/B978-0-12-818658-9.00006-5

    Article  Google Scholar 

  19. Zhao JL, Ma DT, Wang C et al (2021) Recent advances in anisotropic two-dimensional materials and device applications. Nano Res 14:897–919. https://doi.org/10.1007/s12274-020-3018-z

    Article  CAS  Google Scholar 

  20. Danielson E, Sontakke VA, Porkovich AJ et al (2020) Graphene based field-effect transistor biosensors functionalized using gas-phase synthesized gold nanoparticles. Sensor Actuat B-Chem 320:128432–128438. https://doi.org/10.1016/j.snb.2020.128432

    Article  CAS  Google Scholar 

  21. Hilder TA, Gordon D, Chung SH (2009) Boron nitride nanotubes selectively permeable to cations or anions. Small 5:2870–2875. https://doi.org/10.1002/smll.200901229

    Article  CAS  Google Scholar 

  22. Deng LJ, Xu YF, Sun CX, Yun BF, Sun Q, Zhao CJ, Li Z (2018) Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer. Sci Bull 63:917–924. https://doi.org/10.1016/j.scib.2018.05.022

    Article  CAS  Google Scholar 

  23. Aizenberg J, Fratzl P (2009) Biological and biomimetic materials. Adv Mater 21:387–388. https://doi.org/10.1002/adma.200803699

    Article  CAS  Google Scholar 

  24. Calvert PD (1994) Polymers for new materials. Polymer 35:4484–4488. https://doi.org/10.1016/0032-3861(94)90792-7

    Article  CAS  Google Scholar 

  25. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem 8:123–137. https://doi.org/10.1007/s40097-018-0265-6

    Article  CAS  Google Scholar 

  26. Antiochia R, Tortolini C, Tasca F, Gonton L, Bollella P (2018) Chapter 1-graphene and 2D-like nanomaterials: different biofunctionalization pathways for electrochemical biosensor development. Graphene Bioelectron 1–35. https://doi.org/10.1016/B978-0-12-813349-1.00001-9

  27. Wei G, Gong CC, Hu KK, Wang YB, Zhang YT (2019) Biomimetic hydroxyapatite on graphene supports for biomedical applications: a review. Nanomaterials-Basel 9:1435–1454. https://doi.org/10.3390/nano9101435

    Article  CAS  Google Scholar 

  28. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  Google Scholar 

  29. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  30. Meyer JC, Geim AK, Katsnelson ML, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63. https://doi.org/10.1038/nature05545

    Article  CAS  Google Scholar 

  31. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Edit 48:7752–7777. https://doi.org/10.1002/anie.200901678

    Article  CAS  Google Scholar 

  32. Yan L, Zheng YB, Zhao F et al (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114. https://doi.org/10.1039/c1cs15193b

    Article  CAS  Google Scholar 

  33. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34. https://doi.org/10.1021/tx200339h

    Article  CAS  Google Scholar 

  34. Wang Y, Li ZH, Wang J, Li JH, Lin YH (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212. https://doi.org/10.1016/j.tibtech.2011.01.008

    Article  CAS  Google Scholar 

  35. Wang YQ, Sauriat-Dorizon H, Korri-Youssoufi H (2017) Direct electrochemical DNA biosensor based on reduced graphene oxide and metalloporphyrin nanocomposite. Sensor Actuat B-Chem 251:40–48. https://doi.org/10.1016/j.snb.2017.04.128

    Article  CAS  Google Scholar 

  36. Bonanni A, Ambrosi A, Pumera M (2012) Nucleic acid functionalized graphene for biosensing. Chem-Eur J 18:1668–1673. https://doi.org/10.1002/chem.201102850

    Article  CAS  Google Scholar 

  37. Dubuisson E, Yang ZY, Loh KP (2011) Optimizing label-free DNA electrical detection on graphene platform. Anal Chem 83:2452–2460. https://doi.org/10.1021/ac102431d

    Article  CAS  Google Scholar 

  38. Lopez A, Liu J (2020) Covalent and noncovalent functionalization of graphene oxide with DNA for smart sensing. Adv Intell Syst 2:2000123–2000135. https://doi.org/10.1002/aisy.202000123

    Article  Google Scholar 

  39. Husale BS, Sahoo S, Radenovic A, Traversi F, Annibale P, Kis A (2010) ssDNA binding reveals the atomic structure of graphene. Langmuir 26:18078–18082. https://doi.org/10.1021/la102518t

    Article  CAS  Google Scholar 

  40. Moore TC, Yang AH, Ogungbesan O, Hartkamp R, Iacovella CR, Zhang Q, McCabe C (2019) Influence of single-stranded DNA coatings on the interaction between graphene nanoflakes and lipid bilayers. J Phys Chem B 123:7711–7721. https://doi.org/10.1021/acs.jpcb.9b04042

    Article  CAS  Google Scholar 

  41. Chen JL, Chen L, Wang Y, Chen SD (2014) Molecular dynamics simulations of the adsorption of DNA segments onto graphene oxide. J Phys D Appl Phys 47:505401–505406. https://doi.org/10.1088/0022-3727/47/50/505401

    Article  CAS  Google Scholar 

  42. Muraru S, Samoila CG, Slusanschi EI, Burns JS, Ionita M (2020) Molecular dynamics simulations of DNA adsorption on graphene oxide and reduced graphene oxide-PEG-NH2 in the Presence of Mg2+ and Cl- ions. Coatings 10:289–307. https://doi.org/10.3390/coatings10030289

    Article  CAS  Google Scholar 

  43. Xu Z, Lei XL, Tu YS, Tan ZJ, Song B, Fang HP (2017) Dynamic cooperation of hydrogen binding and π stacking in ssDNA adsorption on graphene oxide. Chem Eur J 23:13100–13104. https://doi.org/10.1002/chem.201701733

    Article  CAS  Google Scholar 

  44. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein−nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637. https://doi.org/10.1021/cr100440g

    Article  CAS  Google Scholar 

  45. Li D, Zhang W, Yu X, Wang Z, Su Z, Wei G (2016) When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale 8:19491–19509. https://doi.org/10.1039/c6nr07249f

    Article  CAS  Google Scholar 

  46. Hampitak P, Melendrez D, Iliut M et al (2020) Protein interactions and conformations on graphene-based materials mapped using a quartz-crystal microbalance with dissipation monitoring (QCM-D). Carbon 165:317–327. https://doi.org/10.1016/j.carbon.2020.04.093

    Article  CAS  Google Scholar 

  47. Wang YQ, Zhu ZH, Zhang HM, Chen J, Tang BP, Cao J (2016) Investigation on the conformational structure of hemoglobin on graphene oxide. Mater Chem Phys 182:272–279. https://doi.org/10.1016/j.matchemphys.2016.07.032

    Article  CAS  Google Scholar 

  48. Kim KS, Um YM, Jang JR, Choe WS, Yoo PJ (2013) Highly sensitive reduced graphene oxide impedance sensor harnessing pi-stacking interaction mediated direct deposition of protein probes. ACS Appl Mater Inter 5:3591–3598. https://doi.org/10.1021/am303238r

    Article  CAS  Google Scholar 

  49. Qian YH, Di SH, Wang L, Li Z (2021) Recent advance in the synthesis and applications of graphene-polypeptide nanocomposites. J Mater Chem B 9:6521–6535. https://doi.org/10.1039/D1TB00779C

    Article  CAS  Google Scholar 

  50. Wang L, Zhang YJ, Wu AG, Wei G (2017) Designed graphene-peptide nanocomposites for biosensor applications: a review. Anal Chim Acta 985:24–40. https://doi.org/10.1016/j.aca.2017.06.054

    Article  CAS  Google Scholar 

  51. Yang ZX, Ge CC, Liu JJ et al (2015) Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale 7:18725–18737. https://doi.org/10.1039/c5nr01172h

    Article  CAS  Google Scholar 

  52. Zou XQ, Wei S, Jasensky J, Xiao MY, Wang QM, Brooks CL, Chen Z (2017) Molecular interactions between graphene and biological molecules. J Am Chem Soc 139:1928–1936. https://doi.org/10.1021/jacs.6b11226

    Article  CAS  Google Scholar 

  53. Cheng Y, Zhang ZQ, Teo ZS (2013) Deformation of graphene induced by adsorption of peptides: A molecular dynamics study. Int Jappl Mech 05:1350007–1350017. https://doi.org/10.1142/s1758825113500075

    Article  Google Scholar 

  54. Kim S, Kuang ZF, Ngo Y, Farmer B, Naik RR (2015) Biotic-abiotic interactions: factors that influence peptide-graphene interactions. ACS Appl Mater Inter 7:20447–20453. https://doi.org/10.1021/acsami.5b06434

    Article  CAS  Google Scholar 

  55. Jin LL, Yang K, Yao K et al (2012) Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano 6:4864–4875. https://doi.org/10.1021/nn300217z

    Article  CAS  Google Scholar 

  56. Liu B, Wang Y, Chen Y, Guo L, Wei G (2020) Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J Mater Chem B 8:10065–10086. https://doi.org/10.1039/D0TB02051F

    Article  CAS  Google Scholar 

  57. Zhang Y, Zhang JY, Huang XL, Zhou XJ, Wu HX, Guo SW (2012) Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 8:154–159. https://doi.org/10.1002/smll.201101695

    Article  CAS  Google Scholar 

  58. Sun XT, Feng ZW, Hou TJ, Li YY (2014) Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations. ACS Appl Mater Inter 6:7153–7163. https://doi.org/10.1021/am500167c

    Article  CAS  Google Scholar 

  59. Zhang JL, Zhang F, Yang HJ, Huang XL, Liu H, Zhang JY, Guo SW (2010) Graphene oxide as a matrix for enzyme immobilization. Langmuir 26:6083–6085. https://doi.org/10.1021/la904014z

    Article  CAS  Google Scholar 

  60. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. https://doi.org/10.1038/nnano.2010.279

    Article  CAS  Google Scholar 

  61. Zhou KQ, Jiang SH, Bao CL et al (2012) Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv 2:11695–11703. https://doi.org/10.1039/c2ra21719h

    Article  CAS  Google Scholar 

  62. Xi Q, Zhou DM, Kan YY, Ge J, Wu ZK, Yu RQ, Jiang JH (2014) Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal Chem 86:1361–1365. https://doi.org/10.1021/ac403944c

    Article  CAS  Google Scholar 

  63. Lu C, Liu YB, Ying YB, Liu JW (2017) Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir 33:630–637. https://doi.org/10.1021/acs.langmuir.6b04502

    Article  CAS  Google Scholar 

  64. Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001. https://doi.org/10.1021/ja4019572

    Article  CAS  Google Scholar 

  65. Li BL, Zou HL, Lu L, Yang Y, Lei JL, Luo HQ, Li NB (2015) Size-dependent optical absorption of layered MoS2 and DNA oligonucleotides induced dispersion behavior for label-free detection of single-nucleotide polymorphism. Adv Funct Mater 25:3541–3550. https://doi.org/10.1002/adfm.201500180

    Article  CAS  Google Scholar 

  66. Liu F, Zhang YJ, Wang HB, Li LH, Zhao WJ, Shen JW, Liang LJ (2020) Study on the adsorption orientation of DNA on two-dimensional MoS2 surface via molecular dynamics simulation: a vertical orientation phenomenon. Chem Phys 529:110546–110552. https://doi.org/10.1016/j.chemphys.2019.110546

    Article  CAS  Google Scholar 

  67. Li AX, Zhang J, Qiu JC, Zhao ZH, Wang C, Zhao CJ, Liu H (2017) A novel aptameric biosensor based on the self-assembled DNA-WS2 nanosheet architecture. Talanta 163:78–84. https://doi.org/10.1016/j.Talanta.2016.10.088

    Article  CAS  Google Scholar 

  68. Yang JM, Gao L, Peng C, Zhang W (2019) Construction of self-signal DNA electrochemical biosensor employing WS2 nanosheets combined with PIn6COOH. RSC Adv 9:9613–9619. https://doi.org/10.1039/c8ra10266j

    Article  CAS  Google Scholar 

  69. Wang ST, Zhang YL, Ning Y, Zhang GJ (2015) A WS2 nanosheet-based platform for fluorescent DNA detection via PNA-DNA hybridization. Analyst 140:434–439. https://doi.org/10.1039/c4an01738b

    Article  CAS  Google Scholar 

  70. Fan HJ, Zhao DH, Li YT, Zhou J (2017) Lysozyme orientation and conformation on MoS2 surface: insights from molecular simulations. Biointerphases 12:02D416-1–02D416-8. https://doi.org/10.1116/1.4984803

    Article  CAS  Google Scholar 

  71. Gu ZL, Yang ZX, Kang SG, Yang JR, Luo JD, Zhou RH (2016) Robust denaturation of Villin Headpiece by MoS2 nanosheet: potential molecular origin of the nanotoxicity. Sci Rep-UK 6:28252–28259. https://doi.org/10.1038/srep28252

    Article  CAS  Google Scholar 

  72. Song J, Li MG, Liang HM, Lou H (2017) Adsorption patterns of aromatic amino acids on monolayer MoS2 and Au-modified MoS2 surfaces: a first-principles study. Comput Theor Chem 1118:115–122. https://doi.org/10.1016/j.comptc.2017.09.005

    Article  CAS  Google Scholar 

  73. Meng YJ, Liu RR, Zhu M, Zhai HL, Ren CL (2020) Exploring the interactions between flawed materials and YAP65 to reveal the role of vacancy defects in MoS2 sheet nanotoxicity. J Nanopart Res 22:208–218. https://doi.org/10.1007/s11051-020-04945-0

    Article  CAS  Google Scholar 

  74. Gu ZL, Li WF, Hong LB, Zhou RH (2016) Exploring biological effects of MoS2 nanosheets on native structures of alpha-helical peptides. J Chem Phys 144:175103–175111. https://doi.org/10.1063/1.4948459

    Article  CAS  Google Scholar 

  75. Chen H, Li LB, Zhang T, Qiao ZW, Tang JH, Zhou J (2018) Protein translocation through a MoS2 nanopore: a molecular dynamics study. J Phys Chem C 122:2070–2080. https://doi.org/10.1021/acs.jpcc.7b07842

    Article  CAS  Google Scholar 

  76. Li X, Li YQ, Qiu Q et al (2019) Efficient biofunctionalization of MoS2 nanosheets with peptides as intracellular fluorescent biosensor for sensitive detection of caspase-3 activity. J Colloid Interf Sci 543:96–105. https://doi.org/10.1016/j.jcis.2019.02.011

    Article  CAS  Google Scholar 

  77. Mudedla SK, Murugan NA, Agren H (2018) Free energy landscape for alpha-helix to beta-sheet interconversion in small amyloid forming peptide under nanoconfinement. J Phys Chem B 122:9654–9664. https://doi.org/10.1021/acs.jpcb.8b07917

    Article  CAS  Google Scholar 

  78. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang CC, Zhi CY (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993. https://doi.org/10.1021/nn1006495

    Article  CAS  Google Scholar 

  79. Weng QH, Wang XB, Wang X, Bando Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012. https://doi.org/10.1039/c5cs00869g

    Article  CAS  Google Scholar 

  80. Magdalena JS, Martyna T, Mateusz D, Katarzyna P, Ewa M (2018) Hexagonal boron nitride functionalized with Au nanoparticles-properties and potential biological applications. Nanomater-Basel 8:605–626. https://doi.org/10.3390/nano8080605

    Article  CAS  Google Scholar 

  81. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967. https://doi.org/10.1126/science.269.5226.966

    Article  CAS  Google Scholar 

  82. Wang JS, Lee CH, Yap YK (2010) Recent advancements in boron nitride nanotubes. Nanoscale 2:2028–2034. https://doi.org/10.1039/c0nr00335b

    Article  CAS  Google Scholar 

  83. Lin Q, Zou XL, Zhou G, Liu R, Wu J, Li J, Duan WH (2011) Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study. Phys Chem Chem Phys 13:12225–12230. https://doi.org/10.1039/c1cp20783k

    Article  CAS  Google Scholar 

  84. Lee JH, Choi YK, Kim HJ, Scheicher RH, Cho JH (2013) Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations. J Phys Chem C 117:13435–13441. https://doi.org/10.1021/jp402403f

    Article  CAS  Google Scholar 

  85. Zhang LY, Wang XQ (2016) DNA sequencing by hexagonal boron nitride nanopore: a computational study. Nanomater-Basel 6:111–121. https://doi.org/10.3390/nano6060111

    Article  CAS  Google Scholar 

  86. Lu T, Wang LB, Jiang Y, Liu QW, Huang CJ (2016) Hexagonal boron nitride nanoplates as emerging biological nanovectors and their potential applications in biomedicine. J Mater Chem B 4:6103–6110. https://doi.org/10.1039/c6tb01481j

    Article  CAS  Google Scholar 

  87. Lin Y, Williams TV, Xu TB, Cao W, Elsayed-Ali HE, Connell JW (2011) Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis:critical role of water. J Phys Chem C 115:2679–2685. https://doi.org/10.1021/jp110985w

    Article  CAS  Google Scholar 

  88. Guan M, Hao L, Chen L et al (2020) Facile mechanical-induced functionalization of hexagonal boron nitride and its application as vehicles for antibacterial essential oil. ACS Sustain Chem Eng 8:15120–15133. https://doi.org/10.1021/acssuschemeng.0c03781

    Article  CAS  Google Scholar 

  89. Mudedla SK, Balamurugan K, Subramanian V (2016) Unravelling the structural changes in α-helical peptides on interaction with convex, concave and planar surfaces of boron nitride based nanomaterials. J Phys Chem C 120:28246–28260. https://doi.org/10.1021/acs.jpcc.6b08587

    Article  CAS  Google Scholar 

  90. Zhang HJ, Yamazaki T, Zhi CY, Hanagata N (2012) Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides. Nanoscale 4:6343–6350. https://doi.org/10.1039/c2nr31189e

    Article  CAS  Google Scholar 

  91. Brljak N, Parab AD, Rao R, Slocik JM, Naik RR, Knecht MR, Walsh TR (2020) Material composition and peptide sequence affects biomolecule affinity to and selectivity for h-boron nitride and graphene. Chem Commun 56:8834–8837. https://doi.org/10.1039/D0CC02635B

    Article  CAS  Google Scholar 

  92. Shi L, Mu CL, Gao T et al (2019) Rhodopsin-like ionic gate fabricated with graphene oxide and isomeric DNA switch for efficient photocontrol of ion transport. J Am Chem Soc 141:8239–8243. https://doi.org/10.1021/jacs.9b01759

    Article  CAS  Google Scholar 

  93. Liu SK, Mou S, Zhou CC et al (2018) Off-the-shelf biomimetic graphene oxide-collagen hybrid scaffolds wrapped with osteoinductive extracellular matrix for the repair of cranial defects in rats. ACS Appl Mater Inter 10:42948–42958. https://doi.org/10.1021/acsami.8b11071

    Article  CAS  Google Scholar 

  94. Jiao D, Zheng A, Liu Y et al (2021) Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact Mater 6:2011–2028. https://doi.org/10.1016/j.bioactmat.2020.12.003

    Article  CAS  Google Scholar 

  95. Kim JY, Kim HD, Park J et al (2018) Enhanced osteogenic commitment of murine mesenchymal stem cells on graphene oxide substrate. Biomaterials 22:1–9. https://doi.org/10.1186/s40824-017-0112-8

    Article  CAS  Google Scholar 

  96. Guo CX, Ng SR, Khoo SY, Zheng XT, Chen P, Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensorfor real-time detection of nitric oxide molecules. ACS Nano 6:6944–6951. https://doi.org/10.1021/nn301974u

    Article  CAS  Google Scholar 

  97. Xia JJ, Wang PY, Bin Z, Onyinye AI (2021) Enhancing electrochemical sensing for catechol by biomimetic oxidase covalently functionalized graphene oxide. Bioproc Biosyst Eng 44:343–353. https://doi.org/10.1007/s00449-020-02446-x

    Article  CAS  Google Scholar 

  98. Wang LM, Lin XY, Wang J et al (2014) Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv Funct Mater 24:4229–4239. https://doi.org/10.1002/adfm.201400015

    Article  CAS  Google Scholar 

  99. Li LL, Tang FQ, Liu HY et al (2011) In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 5:6874–6882. https://doi.org/10.1021/nn103380r

    Article  CAS  Google Scholar 

  100. Xie M, Yang M, Sun X, Yang N, Deng TT, Li YP, Shen HJ (2020) WS2 nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal and chemo combination therapy. J Mater Chem B 8:2331–2342. https://doi.org/10.1039/c9tb01604j

    Article  CAS  Google Scholar 

  101. Xie M, Yang N, Cheng JX, Yang M, Deng TT, Li YP, Feng CL (2020) Layered MoS2 nanosheets modified by biomimetic phospholipids: Enhanced stability and its synergistic treatment of cancer with chemo-photothermal therapy. Colloid Surface B 187:110631–110660. https://doi.org/10.1016/j.colsurfb.2019.110631

    Article  CAS  Google Scholar 

  102. Huang XY, Zhi CY, Jiang PK, Golberg D, Bando Y, Tanaka T (2013) Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater 23:1824–1831. https://doi.org/10.1002/adfm.201201824

    Article  CAS  Google Scholar 

  103. Zhi CY, Bando Y, Tang CC, Huang Q, Golberg D (2008) Boron nitride nanotubes: functionalization and composites. J Mater Chem 18:3900–3908. https://doi.org/10.1039/b804575e

    Article  CAS  Google Scholar 

  104. Thakur VK, Yan J, Lin MF et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem-UK 3:962–969. https://doi.org/10.1039/c2py00612j

    Article  CAS  Google Scholar 

  105. Wu HC, Kessler MR (2015) Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization. ACS Appl Mater Inter 7:5915–5926. https://doi.org/10.1021/acsami.5b00147

    Article  CAS  Google Scholar 

  106. Mann S (2000) The chemistry of form. Angew Chem Int Ed 39:3392–3406. https://doi.org/10.1002/1521-3773(20001002)39:19%3c3392::aid-anie3392%3e3.0.co;2-m

    Article  CAS  Google Scholar 

  107. Xu AW, Ma YR, Cölfen H (2007) Biomimetic mineralization. J Mater Chem 17:415–449. https://doi.org/10.1039/b611918m

    Article  CAS  Google Scholar 

  108. Cao HQ, Zhang L, Zheng H, Wang Z (2010) Hydroxyapatite nanocrystals for biomedical applications. J Phys Chem C 114:18352–18357. https://doi.org/10.1021/jp106078b

    Article  CAS  Google Scholar 

  109. Li M, Xiong P, Yan F et al (2018) An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact Mater 3:1–18. https://doi.org/10.1016/j.bioactmat.2018.01.001

    Article  Google Scholar 

  110. Yao J, Sun Y, Yang M, Duan YX (2012) Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem 22:14313–14329. https://doi.org/10.1039/c2jm31632c

    Article  CAS  Google Scholar 

  111. Shchukin DG, Sukhorukov GB, Möhwald H (2003) Biomimetic fabrication of nanoengineered hydroxyapatite/polyelectrolyte composite shell. Chem Mater 15:3947–3950. https://doi.org/10.1021/cm0341585

    Article  CAS  Google Scholar 

  112. Fan ZJ, Wang JQ, Wang ZF et al (2013) Casein phosphopeptide-biofunctionalized graphene biocomposite for hydroxyapatite biomimetic mineralization. J Phys Chem C 117:10375–10382. https://doi.org/10.1021/jp312163m

    Article  CAS  Google Scholar 

  113. Phelan M, Aherne A, FitzGerald RJ, O’Brien NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19:643–654. https://doi.org/10.1016/j.idairyj.2009.06.001

    Article  CAS  Google Scholar 

  114. Wang JH, Ouyang ZF, Ren ZW, Li JF, Zhang PP, Wei G, Su ZQ (2015) Self-assembled peptide nanofibers on graphene oxide as a novel nanohybrid for biomimetic mineralization of hydroxyapatite. Carbon 89:20–30. https://doi.org/10.1016/j.carbon.2015.03.024

    Article  CAS  Google Scholar 

  115. Murugan N, Sundaramurthy A, Chen SM, Sundramoorthy AK (2017) Graphene oxide/oxidized carbon nanofiber/mineralized hydroxyapatite based hybrid composite for biomedical applications. Mater Res Express 4:124005–124036. https://doi.org/10.1088/2053-1591/aa9ddd

    Article  CAS  Google Scholar 

  116. Shuai CJ, Peng B, Feng P, Yu L, Lai RL, Min AJ (2021) In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J Adv Res. https://doi.org/10.1016/j.jare.2021.03.009

    Article  Google Scholar 

  117. Li M, Wang YB, Liu Q et al (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1:475–484. https://doi.org/10.1039/c2tb00053a

    Article  CAS  Google Scholar 

  118. Martino AD, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990. https://doi.org/10.1016/j.biomaterials.2005.03.016

    Article  CAS  Google Scholar 

  119. Yang XM, Tu YF, Li L, Shang SM, Tao XM (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Inter 2:1707–1713. https://doi.org/10.1021/am100222m

    Article  CAS  Google Scholar 

  120. Xie CM, Lu X, Han L et al (2016) Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Appl Mater Inter 8:1707–1717. https://doi.org/10.1021/acsami.5b09232

    Article  CAS  Google Scholar 

  121. Stevanovic M, Djošić M, Janković V et al (2020) Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. J Biomed Mater Res A 108:2175–2189. https://doi.org/10.1002/jbm.a.36974

    Article  CAS  Google Scholar 

  122. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320. https://doi.org/10.1038/nature04226

    Article  CAS  Google Scholar 

  123. Guo YJ, Deng L, Li J, Guo SJ, Wang EK, Dong SJ (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5:1282–1290. https://doi.org/10.1021/nn1029586

    Article  CAS  Google Scholar 

  124. Zhang GF, Dasgupta PK (1992) Hematin as a peroxidase substitute in hydrogen peroxide determinations. Anal Chem 64:517–522. https://doi.org/10.1021/ac00029a013

    Article  CAS  Google Scholar 

  125. Bian FK, Wu JD, Wang H et al (2018) Bioinspired photonic barcodes with graphene oxide encapsulation for multiplexed MicroRNA quantification. Small 14:1803551–1803557. https://doi.org/10.1002/smll.201803551

    Article  CAS  Google Scholar 

  126. Kidane AG, Salacinski H, Tiwari A, Bruckdorfer KR, Seifalian AM (2004) Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromol 5:798–813. https://doi.org/10.1021/bm0344553

    Article  CAS  Google Scholar 

  127. Cheng C, Li S, Nie SQ, Zhao WF, Yang H, Sun SD, Zhao CS (2012) General and biomimetic approach to biopolymer-functionalized graphene oxide nanosheet through adhesive dopamine. Biomacromol 13:4236–4246. https://doi.org/10.1021/bm3014999

    Article  CAS  Google Scholar 

  128. Lee DY, Khatun Z, Lee JH, Lee YK, In I (2011) Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromol 12:336–341. https://doi.org/10.1021/bm101031a

    Article  CAS  Google Scholar 

  129. Cheng C, Nie SQ, Li S et al (2013) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B 1:265–275. https://doi.org/10.1039/c2tb00025c

    Article  CAS  Google Scholar 

  130. Wang JH, Wang HX, Wang YZ, Li JF, Su ZQ, Wei G (2014) Alternate layer-by-layer assembly of graphene oxide nanosheets and fibrinogen nanofibers on a silicon substrate for a biomimetic three-dimensional hydroxyapatite scaffold. J Mater Chem B 2:7360–7368. https://doi.org/10.1039/c4tb01324g

    Article  CAS  Google Scholar 

  131. Shao CM, Liu YX, Chi JJ, Wang J, Zhao Z, Zhao YJ (2019) Responsive inverse opal scaffolds with biomimetic enrichment capability for cell culture. Research 2019:9783793–9783802. https://doi.org/10.34133/2019/9783793

    Article  CAS  Google Scholar 

  132. Zhang RR, Su SS, Hu KL, Shao LH, Deng XW, Sheng W, Wu Y (2015) Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy. Nanoscale 7:19722–19731. https://doi.org/10.1039/c5nr04828a

    Article  CAS  Google Scholar 

  133. Shao LH, Zhang RR, Lu JQ, Zhao CY, Deng XW, Wu Y (2017) Mesoporous silica coated polydopamine functionalized reduced graphene oxide for synergistic targeted chemo-photothermal therapy. ACS Appl Mater Inter 9:1226–1236. https://doi.org/10.1021/acsami.6b11209

    Article  CAS  Google Scholar 

  134. Zhao XB, Wei ZH, Zhao ZP et al (2018) Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular doxorubicin delivery. ACS Appl Mater Inter 10:6608–6617. https://doi.org/10.1021/acsami.7b16910

    Article  CAS  Google Scholar 

  135. Zhang HC, Grüner G, Zhao YL (2013) Recent advancements of graphene in biomedicine. J Mater Chem B 1:2542–2567. https://doi.org/10.1039/c3tb20405g

    Article  CAS  Google Scholar 

  136. Hu WB, Peng C, Lv M et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700. https://doi.org/10.1021/nn200021j

    Article  CAS  Google Scholar 

  137. Cheng C, Li S, Zhao J et al (2013) Biomimetic assembly of polydopamine-layer on graphene: mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem Eng J 228:468–481. https://doi.org/10.1016/j.cej.2013.05.019

    Article  CAS  Google Scholar 

  138. Liu YY, Liang YM, Yang R, Li JJ, Qu LB (2019) A highly sensitive and selective electrochemical sensor based on polydopamine functionalized graphene and molecularly imprinted polymer for the 2,4-dichlorophenol recognition and detection. Talanta 195:691–698. https://doi.org/10.1016/j.talanta.2018.11.052

    Article  CAS  Google Scholar 

  139. Li T, Liu XJ, Li LZ, Wang Y, Ma PM, Chen MQ, Dong WF (2019) Polydopamine-functionalized graphene oxide compounded with polyvinyl alcohol/chitosan hydrogels on the recyclable adsorption of cu(II), Pb(II) and cd(II) from aqueous solution. J Polym Res 26:281–292. https://doi.org/10.1007/s10965-019-1971-6

    Article  CAS  Google Scholar 

  140. Li LZ, Wang Z, Ma PM, Bai HY, Dong WF, Chen MQ (2015) Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. J Polym Res 22:150–159. https://doi.org/10.1007/s10965-015-0794-3

    Article  CAS  Google Scholar 

  141. Liu XY, Zhou YF, Nie WY, Song LY, Chen PP (2015) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50:6113–6123. https://doi.org/10.1007/s10853-015-9166-y

    Article  CAS  Google Scholar 

  142. Rethinasabapathy M, Kang SM, Jang SC, Huh YS (2017) Three-dimensional porous graphene materials for environmental applications. Carbon Lett 22:1–13. https://doi.org/10.5714/CL.2017.22.001

    Article  Google Scholar 

  143. Jin WQ, Yuan L, Liang GZ, Gu AJ (2014) Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability. ACS Appl Mater Inter 6:14931–14944. https://doi.org/10.1021/am502364k

    Article  CAS  Google Scholar 

  144. Feng YZ, Hu J, Xue Y et al (2017) Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. J Mater Chem A 5:13544–13556. https://doi.org/10.1039/c7ta02934a

    Article  CAS  Google Scholar 

  145. Liu YC, Lu MP, Hu ZR et al (2020) Casein phosphopeptide-biofunctionalized graphene oxide nanoplatelets based cellulose green nanocomposites with simultaneous high thermal conductivity and excellent flame retardancy. Chem Eng J 382:122733–122772. https://doi.org/10.1016/j.cej.2019.122733

    Article  CAS  Google Scholar 

  146. Jeon JH, Cheedarala RK, Kee CD, Oh IK (2013) Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv Funct Mater 23:6007–6018. https://doi.org/10.1002/adfm.201203550

    Article  CAS  Google Scholar 

  147. Zhu XB, Zhao HC, Wang LP, Xue QJ (2021) Bioinspired ultrathin graphene nanosheets sandwiched between epoxy layers for high performance of anticorrosion coatings. Chem Eng J 410:128301–128310. https://doi.org/10.1016/j.cej.2020.128301

    Article  CAS  Google Scholar 

  148. Liu YX, Shao CM, Wang Y, Sun LY, Zhao YJ (2019) Bio-inspired self-adhesive bright non-iridescent graphene pigments. Matter 1:1581–1591. https://doi.org/10.1016/j.matt.2019.08.018

    Article  Google Scholar 

  149. Agrawal DC, Yadav A, Kesarwani R, Srivastava ON, Kayastha AM (2020) Immobilization of fenugreek beta-amylase onto functionalized graphene quantum dots (GQDs) using Box-Behnken design: Its biochemical, thermodynamic and kinetic studies. Int J Biol Macromol 144:170–182. https://doi.org/10.1016/j.ijbiomac.2019.12.033

    Article  CAS  Google Scholar 

  150. Wu D, Samanta A, Srivastava RK, Hakkarainen M (2018) Nano-graphene oxide functionalized bioactive poly(lactic acid) and poly(epsilon-caprolactone) nanofibrous scaffolds. Mater-Basel 11:566–579. https://doi.org/10.3390/ma11040566

    Article  CAS  Google Scholar 

  151. Shekhar S, Sarkar A, Sharma B, Jain P (2019) Electrochemical evaluation of functionalized graphene oxide filled PVA-chitosan biohybrid for supercapacitor applications. J Appl Polym Sci 137:48610–48617. https://doi.org/10.1002/app.48610

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Nature Science Foundation of China (Grant No. 21505049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Zhuang Li.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, S., Qian, Y., Wang, L. et al. Biofunctionalization of graphene and its two-dimensional analogues and synthesis of biomimetic materials: a review. J Mater Sci 57, 3085–3113 (2022). https://doi.org/10.1007/s10853-021-06787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06787-0

Navigation