Skip to main content
Log in

Comparative study of phase structure, dielectric properties and electrocaloric effect in novel high-entropy ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Unique structure and performance in prominent high-entropy ceramics (HECs) have attracted enormous attentions recently. In this work, we have successfully synthesized pure-phase (Bi1/6Na1/6Sr1/6Ba1/6Pb1/6Ca1/6)TiO3 (BNSBPC) and (Bi1/6La1/6Na1/6K1/6Sr1/6Ba1/6)TiO3 (BLNKSB) HECs by conventional solid-state method. Rietveld refinement results show that BNSBPC composition possesses tetragonal phase (P4mm) while the BLNKSB one exhibits cubic phase (Pm \(\overline{3}\) m). Dielectric characterization reveals distinct relaxation behaviors between BNSBPC and BLNKSB compositions. Relaxor-like nature in BNSBPC and Debye medium in BLNKSB one are verified by dielectric, ferroelectric and Raman spectra characterizations. Maximal electrocaloric effect (ECE, ΔTmax) reaches 0.63 K with relatively narrow temperature span (ΔTspan) of ~ 20 K at 60 kV cm−1 for BNSBPC ceramic, while the BLNKSB one possesses superior temperature stability (ΔTspan = 100 K) with ΔTmax = 0.14 K. Room-temperature ECE is also obtained by home-made adiabatic calorimeter, which indicates a positive ECE for both compositions. Finally, phase structure, dielectric properties and ECE in two high-entropy compositions are comparatively discussed to explore structure–ECE relationships in HECs. The superior thermal stability of ECE in BLNKSB samples provides a broad prospect for designing solid-state refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ma RJ, Zhang ZY, Tong KW, Huber D, Kornbluh R, Ju YS, Pei QB (2017) Highly efficient electrocaloric cooling with electrostatic actuation. Science 357(6356):1130–1134

    Article  CAS  Google Scholar 

  2. Valant M (2012) Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci 57(6):980–1009

    Article  CAS  Google Scholar 

  3. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311(5765):1270–1271

    Article  CAS  Google Scholar 

  4. Hagberg J, Uusimaki A, Jantunen H (2008) Electrocaloric characteristics in reactive sintered 0.87Pb(Mg1/3Nb2/3)O3-0.13PbTiO3. Appl Phys Lett 92(13):132909

    Article  CAS  Google Scholar 

  5. Lu B, Jian XD, Lin XW, Yao YB, Tao T, Liang B, Luo HS, Lu SG (2020) Enhanced electrocaloric effect in single crystals via direct measurement 0.73Pb(Mg1/3Nb2/3)O3-0.27PbTiO3. Curr Comput-Aided Drug Des 10(6):451

    CAS  Google Scholar 

  6. Jian XD, Lu B, Li DD, Yao Y-B, Tao T, Liang B, Guo JH, Zeng Y-J, Chen JL, Lu SG (2018) Direct measurement of large electrocaloric effect in Ba(ZrxTi1–x)O3 Ceramics. ACS Appl Mater Interfaces 10(5):4801–4807

    Article  CAS  Google Scholar 

  7. Li JN, Zhang DW, Qin SQ, Li TY, Wu M, Wang D, Bai Y, Lou XJ (2016) Large room-temperature electrocaloric effect in lead-free BaHfxTi1-xO3 ceramics under low electric field. Acta Mater 115:58–67

    Article  CAS  Google Scholar 

  8. Luo ZD, Zhang DW, Liu Y, Zhou D, Yao YG, Liu CQ, Dkhil B, Ren XB, Lou XJ (2014) Enhanced electrocaloric effect in lead-free BaTi1-xSnxO3 ceramics near room temperature. Appl Phys Lett 105(10):102904

    Article  CAS  Google Scholar 

  9. Bai Y, Han X, Ding K, Qiao LJ (2013) Combined effects of diffuse phase transition and microstructure on the electrocaloric effect Ba1-xSrxTiO3 in ceramics. Appl Phys Lett 103(16):162902

    Article  CAS  Google Scholar 

  10. Han F, Bai Y, Qiao LJ, Guo D (2016) A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics. J Mater Chem C 4(9):1842–1849

    Article  CAS  Google Scholar 

  11. Weyland F, Eisele T, Steiner S, Fromling T, Rossetti GA, Rodel J, Novak N (2018) Long term stability of electrocaloric response in barium zirconate titanate. J Eur Ceram Soc 38(2):551–556

    Article  CAS  Google Scholar 

  12. Hanani Z, Merselmiz S, Danine A, Stein N, Mezzane D, Mb A, Lahcini M, Gagou Y, Spreitzer M, Vengust D, Kutnjak Z, El Marssi M, Luk’yanchuk IA, Gouné M (2020) Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J Adv Ceram 9(2):210–219

    Article  CAS  Google Scholar 

  13. Li JT, Bai Y, Qin SQ, Fu J, Zuo RZ, Qiao LJ (2016) Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics. Appl Phys Lett 109(16):162902

    Article  CAS  Google Scholar 

  14. Yang JL, Zhao Y, Lou XJ, Wu JG, Hao XH (2020) Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary. J Mater Chem C 8(12):4030–4039

    Article  CAS  Google Scholar 

  15. Wang XJ, Wu JG, Dkhil B, Xu BX, Wang XP, Dong GH, Yang G, Lou XJ (2017) Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl Phys Lett 110(6):063904

    Article  CAS  Google Scholar 

  16. Tao H, Yang JL, Lv X, Hao XH, Wu JG (2019) Electrocaloric behavior and piezoelectric effect in relaxor NaNbO3-based ceramics. J Am Ceram Soc 102(5):2578–2586

    CAS  Google Scholar 

  17. Yu Y, Gao F, Weyland F, Du HL, Jin L, Hou L, Yang ZT, Novak N, Qu SB (2019) Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics. J Mater Chem A 7(19):11665–11672

    Article  CAS  Google Scholar 

  18. Turki O, Slimani A, Seveyrat L, Sebald G, Perrin V, Sassi Z, Khemakhem H, Lebrun L (2016) Structural, dielectric, ferroelectric, and electrocaloric properties of 2% Gd2O3 doping (Na0.5Bi0.5)(0.94)Ba0.06TiO3 ceramics. J Appl Phys 120(5):054102

    Article  CAS  Google Scholar 

  19. Weyland F, Acosta M, Koruza J, Breckner P, Rodel J, Novak N (2016) Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv Func Mater 26(40):7326–7333

    Article  CAS  Google Scholar 

  20. Li F, Li J, Zhai J, Shen B, Li S, Zhou M, Zhao K, Zeng H (2018) Influence of structural evolution on electrocaloric effect in Bi0.5Na0.5TiO3-SrTiO3 ferroelectric ceramics. J Appl Phys 124(16):164108

    Article  CAS  Google Scholar 

  21. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511

    Article  CAS  Google Scholar 

  22. Oses C, Toher C, Curtarolo S (2020) High-entropy ceramics. Nat Rev Mater 5(4):295–309

    Article  CAS  Google Scholar 

  23. Djenadic R, Sarkar A, Clemens O, Loho C, Botros M, Chakravadhanula VSK, Kubel C, Bhattacharya SS, Gandhif AS, Hahn H (2017) Multicomponent equiatomic rare earth oxides. Mater Res Lett 5(2):102–109

    Article  CAS  Google Scholar 

  24. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides. Nat Commun 6:8485

    Article  CAS  Google Scholar 

  25. Dabrowa J, Stygar M, Mikula A, Knapik A, Mroczka K, Tejchman W, Danielewski M, Martin M (2018) Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater Lett 216:32–36

    Article  CAS  Google Scholar 

  26. Chen K, Pei X, Tang L, Cheng H, Li Z, Li C, Zhang X, An L (2018) A five-component entropy-stabilized fluorite oxide. J Eur Ceram Soc 38(11):4161–4164

    Article  CAS  Google Scholar 

  27. Ge PZ, Tang XG, Liu QX, Jiang YP, Li WH, Luo J (2018) Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. J Mater Sci-Mater Electron 29(2):1075–1081

    Article  CAS  Google Scholar 

  28. Bérardan D, Franger S, Dragoe D, Meena AK, Dragoe N (2016) Colossal dielectric constant in high entropy oxides. Physica Status Solidi (RRL) Rapid Res Lett 10(4):328–333

    Article  CAS  Google Scholar 

  29. Bérardan D, Franger S, Meena AK, Dragoe N (2016) Room temperature lithium superionic conductivity in high entropy oxides. J Mat Chem A 4(24):9536–9541

    Article  CAS  Google Scholar 

  30. Chen H, Fu J, Zhang P, Peng H, Abney CW, Jie K, Liu X, Chi M, Dai S (2018) Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. J Mater Chem A 6(24):11129–11133

    Article  CAS  Google Scholar 

  31. Zhai S, Rojas J, Ahlborg N, Lim K, Toney MF, Jin H, Chueh WC, Majumdar A (2018) The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy Environ Sci 11(8):2172–2178

    Article  CAS  Google Scholar 

  32. Pu Y, Zhang Q, Li R, Chen M, Du X, Zhou S (2019) Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic. Appl Phys Lett 115:223901

    Article  CAS  Google Scholar 

  33. Du Q, Yan JH, Zhang XY, Li JS, Liu XY, Zhang JR, Qi XW (2020) Phase evolution and dielectric properties of Ba(Ti1/6Sn1/6Zr1/6Hf1/6Nb1/6Ga1/6)O3 high-entropy perovskite ceramics. J Mater Sci-Mater Electron 31(10):7760–7765

    Article  CAS  Google Scholar 

  34. Xiang HM, Xing Y, Dai FZ, Wang HJ, Su L, Miao L, Zhang GJ, Wang YG, Qi XW, Yao L, Wang HL, Zhao B, Li JQ, Zhou YC (2021) High-entropy ceramics: Present status, challenges, and a look forward. J Adv Ceram 10(3):385–441

    Article  CAS  Google Scholar 

  35. Li F, Chen GR, Liu X, Zhai JW, Shen B, Zeng HR, Li SD, Li P, Yang K, Yan HX (2017) Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2□0.1)TiO3 ceramics. J Eur Ceram Soc 37(15):4732–4740

    Article  CAS  Google Scholar 

  36. Li F, Li J, Zhai J, Shen B, Li S, Zeng H (2019) Phase formation and electrocaloric effect in nonstoichiometric 0.94Bi0.5+xNa0.5TiO3-0.06BaTiO3 ceramics. J Mater Sci-Mater Electron 30(4):3465–3471

    Article  CAS  Google Scholar 

  37. Jiang S, Hu T, Gild J, Zhou N, Nie J, Qin M, Harrington T, Vecchio K, Luo J (2018) A new class of high-entropy perovskite oxides. Scripta Mater 142:116–120

    Article  CAS  Google Scholar 

  38. Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Naturwissenschaften 14(21):477–485

    Article  CAS  Google Scholar 

  39. Shvartsman VV, Kleemann W, Dec J, Xu ZK, Lu SG (2006) Diffuse phase transition in BaTi1-xSnxO3 ceramics: An intermediate state between ferroelectric and relaxor behavior. J Appl Phys 99(12):124111

    Article  CAS  Google Scholar 

  40. Bokov AA, Ye ZG (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41(1):31–52

    Article  CAS  Google Scholar 

  41. Sharma P, Kumar P, Kundu RS, Juneja JK, Ahlawat N, Punia R (2015) Structural and dielectric properties of substituted barium titanate ceramics for capacitor applications. Ceram Int 41(10):13425–13432

    Article  CAS  Google Scholar 

  42. Sharma P, Berwal N, Ahlawat N, Maan AS, Punia R (2019) Study of structural, dielectric, ferroelectric and magnetic properties of vanadium doped BCT ceramics. Ceram Int 45(16):20368–20378

    Article  CAS  Google Scholar 

  43. Xiong W, Zhang H, Cao S, Gao F, Svec P, Dusza J, Reece MJ, Yan H (2021) Low-loss high entropy relaxor-like ferroelectrics with A-site disorder. J Eur Ceram Soc 41(4):2979–2985

    Article  CAS  Google Scholar 

  44. Viehland D, Jang SJ, Cross LE, Wuttig M (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68(6):2916–2921

    Article  CAS  Google Scholar 

  45. Cheng ZY, Zhang LY, Yao X (1996) Investigation of glassy behavior of lead magnesium niobate relaxors. J Appl Phys 79(11):8615–8619

    Article  CAS  Google Scholar 

  46. Barick BK, Mishra KK, Arora AK, Choudhary RNP, Pradhan DK (2011) Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J Phys D-Appl Phys 44(35):8615–8619

    Article  CAS  Google Scholar 

  47. Jiang XJ, Wang BY, Luo LH, Li WP, Zhou J, Chen HB (2014) Electrical properties of (1–x)(Bi0.5Na0.5)TiO3-xKNbO3 lead-free ceramics. J Solid State Chem 213:72–78

    Article  CAS  Google Scholar 

  48. Schutz D, Deluca M, Krauss W, Feteira A, Jackson T, Reichmann K (2012) Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv Func Mater 22(11):2285–2294

    Article  CAS  Google Scholar 

  49. Haumont R, Gemeiner P, Dkhil B, Kiat JM, Bulou A (2006) Polar and chemical states at a nanometer scale in a PbSc1/2Nb1/2O3-PbTiO3 system investigated by Raman spectroscopy. Phys Rev B 73(10):104106

    Article  CAS  Google Scholar 

  50. Li J, Li J, Qin S, Su X, Qiao L, Wang Y, Lookman T, Bai Y (2019) Effects of long- and short-range ferroelectric order on the electrocaloric effect in relaxor ferroelectric ceramics. Phys Rev Appl 11(4):044032

    Article  CAS  Google Scholar 

  51. Wang JF, Yang TQ, Chen SC, Li G, Zhang QF, Yao X (2013) Nonadiabatic direct measurement electrocaloric effect in lead-free Ba, Ca(Zr, Ti)O3 ceramics. J Alloy Compd 550:561–563

    Article  CAS  Google Scholar 

  52. Zhang L, Zhao C, Zheng T, Wu J (2021) Large electrocaloric response with superior temperature stability in NaNbO3-based relaxor ferroelectrics benefiting from the crossover region. J Mater Chem A 9(5):2806–2814

    Article  CAS  Google Scholar 

  53. Li F, Li K, Long MS, Wang CC, Chen GH, Zhai JW (2021) Ferroelectric-relaxor crossover induce large electrocaloric effect with ultrawide temperature span in NaNbO3-based lead-free ceramics. Appl Phys Lett 118(4):043902

    Article  CAS  Google Scholar 

  54. Lu SG, Li DD, Lin XW, Jian XD, Zhao XB, Yao YB, Tao T, Liang B (2020) Influence of electric field on the phenomenological coefficient and electrocaloric strength in ferroelectrics. Acta Physica Sinica 69(12):127701

    Article  Google Scholar 

  55. Lu SG, Lin XW, Li J, Li DD, Yao YB, Tao T, Liang B (2021) Enhanced electrocaloric strengths at room temperature in (SrxBa1-x)(Sn0.05Ti0.95)O3 (lead-free ceramics. J Alloys Compd 871:159519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (No. 2008085QE205), Anhui Provincial higher–education Natural Science research project (KJ2020A0019), the Open Project Program of Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University (No. EFMD2020004Z), Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology, No. 201006–K) and the National Natural Science Foundation of China (Nos. 51872001 and 51772211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Li or Chunchang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, F., Chen, G. et al. Comparative study of phase structure, dielectric properties and electrocaloric effect in novel high-entropy ceramics. J Mater Sci 56, 18417–18429 (2021). https://doi.org/10.1007/s10853-021-06530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06530-9

Navigation