Skip to main content
Log in

Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, research on the preparation of porous Al-containing intermetallic compounds using combustion synthesis (CS) reaction in combination with a space holder process has been gradually increased, in order to improve the porosity and obtain the pore structures with controllable pore morphology and pore size. The reaction mechanism for the M–Al (M = Ti, Ni, Fe, Nb, and Cu) system is closely related to the state of aluminum (e.g., solid or liquid phase) and is greatly affected by processing parameters such as particle size, Al content, heating rate, compacting pressure, sintering temperature, content, and the type of pore-forming agents. Once the sintering temperature causes the appearance of one liquid phase in the reaction system, the remaining solid reactant quickly dissolves into the molten one to improve the surface contact and then generate considerable heat to complete the combustion reaction. Interestingly, the actual temperature change of the sample during the sintering process is accurately detected, and the transparent observation of the reaction state is also realized, which provides a new vision for further exploration of the reaction mechanism of other compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. John B (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632

    Google Scholar 

  2. Li H, Haas-Santo K, Dittmeyer R (2015) Inorganic microporous membranes for H2 and CO2 separation-review of experimental and modeling progress. Chem Eng Sci 127:401–417

    CAS  Google Scholar 

  3. Salerno M, Reverberi AP, Dante S, Toccafondi C (2015) Biomedical applications of anodic porous alumina. Curr Nanosci. https://doi.org/10.2174/1573413711666150415225541

    Article  Google Scholar 

  4. Wang Z, Jiao XY, Feng PZ, Wang XH, Liu YN, Akhtar F (2016) Highly porous open cellular TiAl-based intermetallics fabricated by thermal explosion with space holder process. Intermetallics 68:95–100

    CAS  Google Scholar 

  5. Gao HY, He YH, Zou J, Shen PZ, Jiang Y, Liu CT (2015) Mechanical properties of porous Fe–Al intermetallics. Powder Met 58:197–201

    CAS  Google Scholar 

  6. Zhang YG (2001) Structural intermetallics, 1st edn. National Defense Industry Press, Beijing, p 2

    Google Scholar 

  7. Sina H, Corneliusson J, Turba K (2015) A study on the formation of iron aluminide (FeAl) from elemental powders. J Alloys Compd 636:261–269

    CAS  Google Scholar 

  8. Cai XP, Liu YN, Feng PZ (2018) Fe-Al intermetallic foam with porosity above 60% prepared by thermal explosion. J Alloys Compd 732:443–447

    CAS  Google Scholar 

  9. Kayani SH, Park NK (2017) Effect of Cr and Nb on the phase transformation and pore formation of Ti-Al base alloys. J Alloys Compd 708:308–315

    CAS  Google Scholar 

  10. Jiang Y, Deng CP, He YH et al (2009) Reactive synthesis of microporous titanium-aluminide membranes. Mater Lett 63:22–24

    CAS  Google Scholar 

  11. Cui HZ, Cao LL, Chen YB, Wu J (2012) Unique microstructure of porous NiAl intermetallic compound prepared by combustion synthesis. J Porous Mater 19:415–422

    CAS  Google Scholar 

  12. Gao HY, He YH, Zou J, Xu NP, Liu CT (2013) Pore structure control for porous FeAl intermetallics. Intermetallics 32:423–428

    CAS  Google Scholar 

  13. Karczewski K, Stepniowski WJ, Salerno M (2017) Amino acids aided sintering for the formation of highly porous FeAl intermetallic alloys. Materials 10:746–754

    Google Scholar 

  14. Karczewski K, Stepniowski WJ, Salerno M (2018) Fabrication of FeAl intermetallic foams by tartaric acid-assisted self-propagating high-temperature synthesis. Materials 11:621–627

    Google Scholar 

  15. Henkel D (2011) Porous iron aluminide: innovative filtration technology for refineries and clean coal applications. Adv Mater Process 169:44–46

    Google Scholar 

  16. Jiang Y, He YH, Liu CT (2018) Review of porous intermetallic compounds by reactive synthesis of elemental powders. Intermetallics 93:217–226

    CAS  Google Scholar 

  17. He YH, Jiang Y, Xu NP et al (2007) Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect. Adv Mater 19:2102–2106

    CAS  Google Scholar 

  18. Biswas A, Roy SK, Gurumurthy KR, Prabhu N, Banerjee S (2002) A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode. Acta Mater 50:757–773

    CAS  Google Scholar 

  19. Jiang H, Ye SL, Ma R, Yu P (2019) Influences of sintering parameters on shape-retention ability of porous Ni3Al intermetallic fabricated by powder metallurgy. Intermetallics 105:48–55

    CAS  Google Scholar 

  20. Chen G, Cao P, He YH, Shen PZ, Gao HY (2012) Effect of aluminium evaporation loss on pore characteristics of porous FeAl alloys produced by vacuum sintering. J Mater Sci 47:1244–1250. https://doi.org/10.1007/s10853-011-5771-6

    Article  CAS  Google Scholar 

  21. Shen PZ, Gao HY, Song M (2013) Preparation and pore structure stability at high temperature of porous Fe-Al intermetallics. J Mater Eng Perform 22:3959–3966

    CAS  Google Scholar 

  22. Gao HY, He YH, Shen PZ, Jiang Y, Liu CT (2015) Effect of pressure on pore structure of porous FeAl intermetallics. Adv Powder Technol 26:882–886

    CAS  Google Scholar 

  23. Dong HX, He YH, Jiang Y et al (2011) Effect of Al content on porous Ni–Al alloys. Mater Sci Eng A 528:4849–4855

    Google Scholar 

  24. Ye SL, Hao HL, Mo W et al (2016) Effects of cold compacting pressure on the expansion behavior of Ti-48Al during sintering. J Alloys Compd 673:399–404

    CAS  Google Scholar 

  25. Takata N, Uematsu K, Kobashi M (2017) Compressive properties of porous Ti-Al alloys fabricated by reaction synthesis using a space holder powder. Mater Sci Eng A 697:66–70

    CAS  Google Scholar 

  26. Hao GL, Xu QP, Wang H (2016) Effect of pore structure on mechanical properties of porous TiAl. Mater Sci Technol 32:1592–1596

    CAS  Google Scholar 

  27. Łazinska M, Durejko T, Lipiński S, Polkowski W, Czujko T, Varin RA (2015) Porous graded FeAl intermetallic foams fabricated by sintering process using NaCl space holders. Mater Sci Eng A 636:407–414

    Google Scholar 

  28. Chen MR, Jiang Y, He YH, Lin LW, Huang BY, Liu CT (2012) Pore evolution regulation in synthesis of open pore structured Ti-Al intermetallic compounds by solid diffusion. J Alloys Compd 521:12–15

    CAS  Google Scholar 

  29. Wang YH, Lin JP, He YH, Zu CK, Chen GL (2010) Pore structures and thermal insulating properties of high Nb containing TiAl porous alloys. J Alloys Compd 492:213–218

    CAS  Google Scholar 

  30. Che HQ, Fan QC (2009) Microstructural evolution during the ignition/quenching of pre-heated Ti/3Al powders. J Alloys Compd 475:184–190

    CAS  Google Scholar 

  31. Adeli M, Seyedein SH, Aboutalebi MR, Kobashi M, Kanetake N (2010) A study on the combustion synthesis of titanium aluminide in the self-propagating mode. J Alloys Compd 497:100–104

    CAS  Google Scholar 

  32. Biswas A, Roy SK (2004) Comparison between the microstructural evolutions of two modes of SHS of NiAl: key to a common reaction mechanism. Acta Mater 52:257–270

    CAS  Google Scholar 

  33. Karczewski K, Stępniowski WJ, Chojnacki M, Jóźwiak S (2016) Crystalline oxalic acid aided FeAl intermetallic alloy sintering. Fabrication of intermetallic foam with porosity above 45%. Mater Lett 164:32–34

    CAS  Google Scholar 

  34. Cai XP, Liu YN, Wang XH et al (2018) Fabrication of highly porous CuAl intermetallic by thermal explosion using NaCl space holder. JOM 70:2173–2178

    CAS  Google Scholar 

  35. Shu YM, Suzuki A, Takata N (2019) Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method. J Mater Process Technol 264:182–189

    CAS  Google Scholar 

  36. Salerno M, Stepniowski WJ, Cieslak G et al (2016) Advanced image analysis of the surface pattern emerging in ni3al intermetallic alloys on anodization. Front Mater. https://doi.org/10.3389/fmats.2016.00034

    Article  Google Scholar 

  37. Wang F, Liang YF, Shang SL, Liu ZK, Lin J (2015) Phase transformation in Ti-48Al-6Nb porous alloys and its influence on pore properties. Mater Des 83:508–513

    CAS  Google Scholar 

  38. Yeh CL, Sun WE (2016) Use of TiH2 as a reactant in combustion synthesis of porous Ti5Si3 and Ti5Si3/TiAl intermetallics. J Alloys Compd 669:66–71

    CAS  Google Scholar 

  39. Peng Q, Yang B, Liu LB (2016) Porous TiAl alloys fabricated by sintering of TiH2 and Al powder mixtures. J Alloys Compd 656:530–538

    CAS  Google Scholar 

  40. Jiao XY, Ren XR, Wang XH (2018) Porous TiAl3 intermetallics with symmetrical graded pore-structure fabricated by leaching space holder and thermal explosion process. Intermetallics 95:144–149

    CAS  Google Scholar 

  41. Dong HX, Jiang Y, He YH et al (2009) Formation of porous Ni–Al intermetallics through pressureless reaction synthesis. J Alloy Compd 484:907–913

    CAS  Google Scholar 

  42. Liang YF, Yang F, Zhang LQ, Lin JP, Shang SL, Liu ZK (2014) Reaction behavior and pore formation mechanism of TiAl-Nb porous alloys prepared by elemental powder metallurgy. Intermetallics 44:1–7

    CAS  Google Scholar 

  43. Sienkiewicz J, Kuroda S, Molak RM et al (2014) Fabrication of TiAl intermetallc phases by heat treatment of warm sprayed metal precursors. Intermetallics 49:57–64

    CAS  Google Scholar 

  44. Li TT, Peng CY, Wang RC, Wang XF, Liu B, Wang ZY (2011) Research process in porous Fe-Al, Ti-Al and Ni-Al intermetallic compound porous materials. Nonferrous Metal So 21:784–795

    CAS  Google Scholar 

  45. Karczewski K, Stępniowski WJ, Jóźwiak S (2016) Highly-porous FeAl intermetallic foams formed via sintering with Eosin Y as a gas releasing agent. Mater Lett 178:268–271

    CAS  Google Scholar 

  46. Wang JF, Gao HY, Jiang Y, Yang JS, He YH (2014) Effect of pore-forming agent (NH4)2CO3 content on properties of porous FeAl materials. Mater Sci Eng Powder Metall 19:654–658

    Google Scholar 

  47. Gao HY, He YH, Shen PZ et al (2009) Effects of Al content on porous Fe–Al alloys. Powder Met 52:158–163

    CAS  Google Scholar 

  48. Wu J, Cui HZ, Cao LL, Gu ZZ (2011) Open-celled porous NiAl intermetallics prepared by replication of carbamide space-holders. Nonferrous Met Soc 21:1750–1754

    CAS  Google Scholar 

  49. Hao GL, Wang H, Li XY (2015) Novel double pore structures of TiAl produced by powder metallurgy processing. Mater Lett 142:11–14

    CAS  Google Scholar 

  50. Hao GL, Wang H, Li XY, Wang WG (2016) Preparation and mechanical property of novel ultralight TiAl materials with high porosity. Rare Met Mater Eng 45:2379–2384

    CAS  Google Scholar 

  51. Jiao XY, Cai XP, Niu G, Ren XY, Kang XQ, Feng PZ (2019) Rapid reactive synthesis of TiAl3 intermetallics by thermal explosion and its oxidation resistance at high temperature. Prog Nat Sci-Mater 29:447–452

    CAS  Google Scholar 

  52. Jiao XY, Feng PZ, Wang JZ, Ren XY, Akhtar F (2019) Exothermic behavior and thermodynamic analysis for the formation of porous TiAl3 intermetallics sintering with different heating rates. J Alloys Compd 811:152056

    CAS  Google Scholar 

  53. Gao HY, He YH, Shen PZ et al (2009) Porous FeAl intermetallics fabricated by elemental powder reactive synthesis. Intermetallics 17:1041–1046

    CAS  Google Scholar 

  54. Jiang Y, He HY, Xu PN (2008) Effects of the Al content on pore structures of porous Ti–Al alloys. Intermetallics 16:327–332

    CAS  Google Scholar 

  55. Yang JS, Liao CJ, Wang JF et al (2014) Effects of the Al content on pore structures of porous Ti3AlC2 ceramics by reactive synthesis. Ceram Int 40:4643–4648

    CAS  Google Scholar 

  56. Liu XL, Jiang Y, Zhang HB, Yu LP, Kang JG, He YH (2015) Porous Ti3SiC2 fabricated by mixed elemental powders reactive synthesis. J Eur Ceram Soc 35:1349–1353

    CAS  Google Scholar 

  57. Dong HX, Jiang Y, He YH et al (2010) Oxidation behavior of porous NiAl prepared through reactive synthesis. Mater Chem Phys 122:417–423

    CAS  Google Scholar 

  58. Merzhanov AG (1992) SHS technology. Adv Mater 4:294–295

    Google Scholar 

  59. Ozdemir O, Zeytin S, Bindal C (2009) A study on NiAl produced by pressure-assisted combustion synthesis. Vacuum 84:430–437

    CAS  Google Scholar 

  60. Morsi K (2012) The diversity of combustion synthesis processing: a review. J Mater Sci 47:68–92. https://doi.org/10.1007/s10853-011-5926-5

    Article  CAS  Google Scholar 

  61. Sina H, Iyengar S (2015) Reactive synthesis and characterization of titanium aluminides produced from elemental powder mixtures. J Therm Anal Calorim 122:689–698

    CAS  Google Scholar 

  62. Moore JJ, Feng HJ (1995) Combustion synthesis of advanced materials: part I. React Parameters Prog Mater Sci 39:243–273

    CAS  Google Scholar 

  63. Maznoy A, Kirdyashkin A, Kitler V, Solovyev A (2017) Combustion synthesis and characterization of porous Ni-Al materials for metal-supported solid oxide fuel cells application. J Alloys Compd 697:114–123

    CAS  Google Scholar 

  64. Rosa R, Veronesi P, Casagrande A, Leonelli C (2016) Microwave ignition of the combustion synthesis of aluminides and field-related effects. J Alloys Compd 657:59–67

    CAS  Google Scholar 

  65. Moris K (2001) Review: reaction synthesis processing of Ni-Al intermetallics. Mater Sci Eng A 299:1–15

    Google Scholar 

  66. Gao HY, Xie W, Zhang HB, Shen WJ, He YH (2019) Modification of the reactive synthesis of porous FeAl with addition of Si. Mater High Temp 36:1–8

    Google Scholar 

  67. Zhang HB, Xie W, Gao HY, Shen WJ (2018) Suppression of the SHS reactions during synthesis of porous FeAl intermetallics by introducing silicon. J Alloys Compd 735:1435–1438

    CAS  Google Scholar 

  68. Ran HS, Niu JN, Song BB et al (2014) Microstructure and properties of Ti5Si3-based porous intermetallic compounds fabricated via combustion synthesis. J Alloys Compd 612:337–342

    CAS  Google Scholar 

  69. Dong SS, Hou P, Yang HB, Zou GT (2002) Synthesis of intermetallic NiAl by SHS reaction using coarse-grained nickel and ultrafine-grained aluminum produced by wire electrical explosion. Intermetallics 10:217–223

    Google Scholar 

  70. Biswas A (2005) Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure. Acta Mater 53:1415–1425

    CAS  Google Scholar 

  71. Khoptiar Y, Gotman I (2002) Ti2AlC ternary carbide synthesized by thermal explosion. Mater Lett 57:72–76

    CAS  Google Scholar 

  72. Yuan JJ, Zhang XH, Li B, Wang XM, Sun K (2017) Microstructure and tribological behavior of NiAl/WC composites fabricated by thermal explosion reaction at 800 °C. J Alloys Compd 693:70–75

    CAS  Google Scholar 

  73. Liu Y, Zhang LL, Xiao WW, Zhang LF, Pu YP, Guo SW (2015) Rapid synthesis of Ti2AlN ceramic via thermal explosion. Mater Lett 149:5–7

    CAS  Google Scholar 

  74. Merzhanov AG, Abramov VG (1981) Thermal explosion of explosives and propellants. Rev Propell Explos Pyrot 6:130–148

    CAS  Google Scholar 

  75. Jiao XY, Feng PZ, Liu YN, Cai XP, Wang JZ, Czujko T (2018) Fabrication of highly porous TiAl3 intermetallics using titanium hydride as a reactant in the thermal explosion reaction. J Mater Res 33:2680–2688

    CAS  Google Scholar 

  76. Liu YN, Cai XP, Sun Z et al (2019) Fabrication and characterization of highly porous FeAl-based intermetallics by thermal explosion reaction. Adv Eng Mater 21:1–10

    Google Scholar 

  77. Kang XQ, Yang CM, Zhang HF, Du Y, Feng PZ (2018) Microstructure and properties of Al-Cr porous intermetallics fabricated by thermal explosion reaction. Mater Lett 217:174–176

    CAS  Google Scholar 

  78. Cai XP, Bo X, Feng PZ et al (2019) Porous NbAl3/TiAl3 intermetallic composites with controllable porosity and pore morphology prepared by two-step thermal explosion. J Mater Res Technol 8:3188–3197

    CAS  Google Scholar 

  79. Jiao XY, Wang XH, Feng PZ, Liu YN, Zhang LQ, Akhtar F (2018) Microstructure evolution and pore formation mechanism of porous TiAl3 intermetallics via reactive sintering. Acta Met Sin-Engl 31:440–448

    CAS  Google Scholar 

  80. Liu GH, Chen K, Li JT (2018) Combustion synthesis: an effective tool for preparing inorganic materials. Scr Mater 157:167–173

    CAS  Google Scholar 

  81. Feng PZ, Liu WS, Akhtar F et al (2012) Combustion synthesis of (Mo1− xCrx) Si2 (x= 0.00–0.30) alloys in SHS mode. Adv Powder Technol 23:133–138

    CAS  Google Scholar 

  82. Hu RX, Nash P (2005) The enthalpy of formation of NiAl. J Mater Sci 40:1067–1069. https://doi.org/10.1007/s10853-005-6918-0

    Article  CAS  Google Scholar 

  83. Richards RW, Jones RD, Clements PD et al (1994) Metallurgy of continuous hot dip aluminizing. Int Mat Rev 39:191–212

    CAS  Google Scholar 

  84. Bertolino N, Monagheddu M, Tacca A, Giuliani P, Zanotti C, Tamburini UA (2003) Ignition mechanism in combustion synthesis of Ti-Al and Ti-Ni systems. Intermetallics 11:41–49

    CAS  Google Scholar 

  85. Gaillard C, Despois JF, Mortensen A (2004) Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminium foams. Mater Sci Eng A 374:250–262

    Google Scholar 

  86. Li DS, Zhang YP, Ma X, Zhang XP (2009) Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties. J Alloys Compd 474:L1–L5

    CAS  Google Scholar 

  87. Chen B, Yang GJ, Li CJ, Li CX (2016) Preparation of hierarchical porous metallic materials via deposition of microporous particles. Mater Lett 176:237–240

    CAS  Google Scholar 

  88. Wu Z, Sun LC, Wan P, Li JN, Hu ZJ, Wang JZ (2015) In situ foam-gelcasting fabrication and properties of highly porous γ-Y2Si2O7 ceramic with multiple pore structures. Scr Mater 103:6–9

    CAS  Google Scholar 

  89. Rogachev AS, Mukasyan AS, Varma A (2002) Volume combustion modes in heterogeneous reaction systems. J Mater Synth Process 10:31–36

    CAS  Google Scholar 

  90. Li ZJ, Cai XP, Ren XR et al (2020) Rapid preparation of porous Ni–Al intermetallics by thermal explosion. Combust Sci Technol 192:486–492

    CAS  Google Scholar 

  91. Cai XP, Liu YN, Wang XH et al (2018) Oxidation resistance of highly porous Fe-Al foams prepared by thermal explosion. Met Mater Trans A 49:3683–3691

    CAS  Google Scholar 

  92. Cai XP, Xu R, Ren XR, Kang XQ, Feng PZ (2019) Microstructure and oxidation resistance of porous NbAl3 intermetallic prepared by thermal explosion reaction. Mater Sci Technol 35:1624–1631

    CAS  Google Scholar 

  93. Milanese C, Maglia F, Tacca A, Anselmi-Tamburini U, Zanotti C, Giuliani P (2006) Ignition and reaction mechanism of Co–Al and Nb–Al intermetallic compounds prepared by combustion synthesis. J Alloys Compd 421:156–162

    CAS  Google Scholar 

  94. Yeh CL, Lin JZ (2013) Combustion synthesis of Cr-Al and Cr-Si intermetallics with Al2O3 additions from Cr2O3-Al and Cr2O3-Al-Si reaction systems. Intermetallics 33:126–133

    CAS  Google Scholar 

  95. Feng PZ, Su J, Zhou ZG et al (2015) Microstructure and formation mechanism of porous Ti-Al Intermetallics prepared by pressureless sintering. Rare Met Mat Eng 44:2721–2727

    CAS  Google Scholar 

  96. Shi QL, Qin BT, Feng PF et al (2015) Synthesis, microstructure and properties of Ti–Al porous intermetallic compounds prepared by a thermal explosion reaction. RSC Adv 5:46339–46347

    CAS  Google Scholar 

  97. Jiao XY, Ren XR, Feng PZ (2020) Visible observation and formation mechanism of porous TiAl3 intermetallics during the continuous sintering process. JOM 72:3652–3660

    CAS  Google Scholar 

  98. Lee SH, Lee JH, Lee YH, Shin DH, Kim YS (2000) Effect of heating rate on the combustion synthesis of intermetallics. Mat Sci Eng A 281:275–285

    Google Scholar 

  99. Morsi K, Moussa SO, Wall JJ (2005) Simultaneous combustion synthesis (thermal explosion mode) and extrusion of nickel aluminides. J Mater Sci 40:1027–1030. https://doi.org/10.1007/s10853-005-6526-z

    Article  CAS  Google Scholar 

  100. Cai XP, Li ZJ, Jiao XY et al (2021) Preparation of porous NiAl intermetallic with controllable shape and pore structure by rapid thermal explosion with space holder. Met Mater Int. https://doi.org/10.1007/s12540-12020-00904-12545

    Article  Google Scholar 

  101. Gedevanishvili S, Deevi SC (2002) Processing of iron aluminides by pressureless sintering through Fe+Al elemental route. Mater Sci Eng A 325:163–176

    Google Scholar 

  102. Gao HY, He YH, Shen PZ et al (2008) Effect of heating rate on pore structure of porous FeAl material. Powder Metall 51:171–175

    CAS  Google Scholar 

  103. Liu YN, Zhi S, Cai XP, Jiao XY, Feng PZ (2018) Fabrication of porous FeAl-based intermetallics via thermal explosion. T Nonferrous Met Soc 28:1141–1148

    CAS  Google Scholar 

  104. Liu YN, Cai XP, Sun Z et al (2018) A novel fabrication strategy for highly porous FeAl/Al2O3 composite by thermal explosion in vacuum. Vacuum 149:225–230

    CAS  Google Scholar 

  105. Sina H, Iyengar S (2015) Studies on the formation of aluminides in heated Nb–Al powder mixtures. J Alloys Compd 628:9–19

    CAS  Google Scholar 

  106. Yeh CL, Wang HJ (2009) Effects of sample stoichiometry of thermite-based SHS reactions on formation of Nb–Al intermetallics. J Alloys Compd 485:280–284

    CAS  Google Scholar 

  107. Kobashi M, Miyake S, Kanetake N (2013) Hierarchical open cellular porous TiAl manufactured by space holder process. Intermetallics 42:32–34

    CAS  Google Scholar 

  108. Liu YN (2018) Study on the synthesis and properties of porous FeAl-based intermetallics. PhD Dissertation, China University of Mining and Technology

  109. Jiao XY, Wang XH, Kang XQ, Feng PZ, Zhang LQ, Akhtar F (2017) Effect of heating rate on porous TiAl-based intermetallics synthesized by thermal explosion. Mater Manuf Process 32:489–494

    CAS  Google Scholar 

  110. Jiao XY, Wang XH, Kang XQ et al (2016) Hierarchical porous TiAl3 intermetallics synthesized by thermal explosion with a leachable space-holder material. Mater Lett 181:261–264

    CAS  Google Scholar 

  111. Kai W, Huang RT (1997) The corrosion behavior of Fe-Al alloys in H2/H2S/H2O atmospheres at 700–900 °C. Oxid Met 48:59–86

    CAS  Google Scholar 

  112. Lang FQ, Yu ZM, Gedevanishvili S, Deevi SC, Hayashi S, Narita T (2004) Sulfidation behavior of Fe–40Al sheet in H2–H2S mixtures at high temperatures. Intermetallics 12:469–475

    CAS  Google Scholar 

  113. Chawla N, Deng X (2005) Microstructure and mechanical behavior of porous sintered steels. Mater Sci Eng A 390:98–112

    Google Scholar 

  114. Barin I, Knacke O, Kubaschewski O (1977) Thermochemical properties of inorganic substances. Springer, New York

    Google Scholar 

  115. Liang Y, Che YC (1993) Handbook of inorganic thermodynamics data. Northeastern University Press

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 52020105011). We are grateful to the Advanced Analysis & Computation Center of China University of Mining and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizhong Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, X., Liu, Y., Cai, X. et al. Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: a review. J Mater Sci 56, 11605–11630 (2021). https://doi.org/10.1007/s10853-021-06035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06035-5

Navigation