Skip to main content

Advertisement

Log in

Structural and electronic characteristics of Fe-doped β-Ga2O3 single crystals and the annealing effects

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As capture traps, Fe impurities were intentionally incorporated into beta-gallium oxide (β-Ga2O3) crystals to compensate for unintentional n-type conductivity for applications of semi-insulated single-crystal substrates with high-performances. The systematic investigations are performed to comprehend the influence of the Fe addition on the structural, optical, electronic properties of the β-Ga2O3 crystal, and the annealing effect by using a combination of multi-disciplinary techniques. The Fe-doped β-Ga2O3 crystal exhibits a good single-crystal phase and a high optical transmittance from 400 nm to 2000 nm from the measurements of high-resolution X-ray diffraction and optical transmission spectroscopies. Raman scattering spectra revealed that the high-frequency phonon modes which belong to the stretching and bending of tetrahedron were significantly inhibited by the Fe addition to the β-Ga2O3 crystal. EPR results discovered that the presence of Fe3+ ions preferentially in the octahedral over the tetrahedral sites of the monoclinic structure. After an annealing treatment, the crystalline quality was improved and the oxygen vacancies were reduced. The absorption edge redshifted and the transmittance decreased slightly. In particular, it was discovered that the position of the Fermi level is deviated towards the valence band and the total number of spins of Fe3+ ions was halved from 5.32 × 1014 to 2.86 × 1014 spins/mm3. The annealing treatment not only improved the crystal quality, but also activated irons trap centers and further decreased the conductivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Satpute SD, Jagtap JS, Bhujbal PK, Sonar SM, Baviskar PK, Jadker SR, Pathan HM (2020) Mercurochrome sensitized ZnO/In2O3 photoanode for dye sensitized solar cell. ES Energy Environ 9: 89-94. https://doi.org/10.30919/esee8c720s

  2. Liu GH, Yao GS, Xu JL, Yan X (2020) Spatial decoupling of light absorption and scattering centers in Plasmon-assisted bubble column evaporator for solar steam generation. ES Energy Environ 9: 41-49. https://doi.org/10.30919/esee8c450

  3. Mao WQ, Jiang MM, Ji JL, Wan P, Zhou XB, Kan CX (2020) Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO: Ga microwire. Photon Res 8:175–185. https://doi.org/10.1364/PRJ.8.000175

    Article  CAS  Google Scholar 

  4. Dong JN, Fan J, Mao SD, Lan YP, Zou YG, Wang HZ, Zhang JB, Ma XH (2019) Effect of annealing on the damage threshold and optical properties of HfO2/Ta2O5/SiO2 high-reflection film. Chin Opt Lett 17:113101. https://doi.org/10.3788/COL201917.113101

    Article  Google Scholar 

  5. Zhang ZY, Suo H, Zhao XQ, Guo CF (2020) 808 nm laser triggered self-monitored photo-thermal therapeutic nano-system Y2O3: Nd3+/Yb3+/Er3+@SiO2@Cu2S. Photon Res 8:32–38. https://doi.org/10.1364/PRJ.8.000032

    Article  CAS  Google Scholar 

  6. Li ZW, Luo JL, Hu SQ, Liu Q, Yu WJ, Lu YM, Liu XK (2020) Strain enhancement for a MoS2-on-GaN photodetector with an Al2O3 stress liner grown by atomic layer deposition. Photon Res 8:799–805. https://doi.org/10.1364/PRJ.385885

    Article  CAS  Google Scholar 

  7. Tian WD, Liang F, Lu DZ, Yu HH, Zhang HJ (2021) Highly efficient ultraviolet high-harmonic generation from epsilon-near-zero indium tin oxide films. Photon Res 9:317–323. https://doi.org/10.1364/PRJ.414570

    Article  Google Scholar 

  8. Ueda N, Hosono H, Waseda R, Kawazoe H (1997) Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett 70:3561. https://doi.org/10.1063/1.119233

    Article  CAS  Google Scholar 

  9. Ueda N, Hosono H, Waseda R, Kawazoe H (1997) Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl Phys Lett 71:933. https://doi.org/10.1063/1.119693

    Article  CAS  Google Scholar 

  10. Mohamed HF, Xia CT, Sai QL, Cui HY, Pan MY, Qi HJ (2019) Growth and fundamentals of bulk β-Ga2O3 single crystals. J Semicond 10:11801. https://doi.org/10.1088/1674-4926/40/1/011801

    Article  CAS  Google Scholar 

  11. Tak BR, Garg M, Dewan S, Torres-Castanedo CG, Kuang-Hui L, Gupta V, Li XH, Singh R (2019) High-temperature photocurrent mechanism of β-Ga2O3 based metal-semiconductor-metal solar-blind photodetectors. J Appl Phys 125:144501. https://doi.org/10.1063/1.5088532

    Article  CAS  Google Scholar 

  12. Higashiwaki M, Murakami H, Kumagai Y, Kuramata A (2016) Current status of Ga2O3 power devices. J Appl Phys 55:1202A1. https://doi.org/10.7567/JJAP.55.1202A1

  13. Chen XH, Ren FF, Gu SL, Ye JD (2019) Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photon Res 7:381–415. https://doi.org/10.1364/PRJ.7.000381

    Article  CAS  Google Scholar 

  14. Asghari P, Rahmani AM, Javadi HHS (2019) Internet of things applications: a systematic review. Comput Networks 148:241–261. https://doi.org/10.1016/j.comnet.2018.12.008

    Article  Google Scholar 

  15. Braniste T, Dragoman M, Zhukov S et al (2020) Aero-Ga2O3 nanomaterial electromagnetically transparent from microwaves to terahertz for internet of things applications. Nanomaterials 10(6):1047. https://doi.org/10.3390/nano10061047

    Article  CAS  Google Scholar 

  16. Wu L, Xiao Y, Ghosh M, Zhou Q, Hao Q (2020) Machine learning prediction for bandgaps of inorganic materials. ES Mater Manuf 9: 34-39. https://doi.org/10.30919/esmm5f756

  17. Liu ZQ, Yi XY, Wang JX, Ferguson I, Lu N, Li JM (2019) Theoretical analysis and experimental realization of highly effective acceptor ionization in GaN via Mg Co-doped with 4d-element (In). ES Mater Manuf 4: 25-30. https://doi.org/10.30919/esmm5f209

  18. Idrees M, Liu LQ, Batool S, Luo HB, Liang J, Xu BB, Wang S, Kong J (2019) Cobalt-doping enhancing electrochemical performance of Silicon/Carbon nanocomposite as highly efficient anode materials in lithium-ion batteries. Eng Sci 6: 64–76. https://doi.org/10.30919/es8d798

  19. Shi EZ, Feng TL, Bahk JH, Pan Y, Zheng W, Li Z, Snyder GJ, Pantelides ST, Wu Y (2018) Experimental and theoretical study on well-tunable metal oxide doping towards high-performance thermoelectrics. ES Energy Environ 2: 43–49. https://doi.org/10.30919/esee8c182

  20. Ouyang T, Liu QY, Chen MX et al (2019) Doping induced abnormal contraction and significant reduction of lattice thermal conductivity of open framework Si24. ES Energy Environ 3: 88–95. https://doi.org/10.30919/esee8c210

  21. Zhao XC, Yang P, Yang LJ et al (2018) Enhanced electrochemical performance of Cu2+ doped TiO2 nanoparticles for lithium-ion battery. ES Mater Manuf 1: 67–71. https://doi.org/10.30919/esmm5f109

  22. Neal AT, Mou S, Rafique S et al (2018) Donors and deep acceptors in β-Ga2O3. Appl Phys Lett 113:062101. https://doi.org/10.1063/1.5034474

    Article  CAS  Google Scholar 

  23. Kim I, Yun J, Badloe T, Park H, Seo T, Yang Y, Kim J, Chung Y, Rho J (2020) Structural color switching with a doped indium-gallium-zinc-oxide semiconductor. Photon Res 8(9):1409–1415. https://doi.org/10.1364/PRJ.395749

    Article  Google Scholar 

  24. Su YL, Guo DY, Ye JH, Zhao HL, Wang Z, Wang SL, Li PG, Tang WH (2019) Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity. J Alloys Compd 782:299–303. https://doi.org/10.1063/1.4938455

    Article  CAS  Google Scholar 

  25. Xie PT, Liu Y, Feng M et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-020-00202-z

    Article  Google Scholar 

  26. Wu HK, Zhang Y, Yin R, Zhao W, Li XM, Qian L (2018) Magnetic negative permittivity with dielectric resonance in random Fe3O4@graphene-phenolic resin composites. Adv Compos Hybrid Mater 1:168–176. https://doi.org/10.1007/s42114-017-0014-1

    Article  CAS  Google Scholar 

  27. Gunsser W, Rohwer K (1983) Determination of the correlation between the crystal field axis system and the crystallographic axes in chromium doped β-Ga2O3 by EPR. Phys Status Solidi B 116:275–278. https://doi.org/10.1002/pssb.2221160132

    Article  CAS  Google Scholar 

  28. Zang ZG (2018) Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl Phys Lett 112:042106. https://doi.org/10.1063/1.5017002

    Article  CAS  Google Scholar 

  29. Wang HX, Cao SL, Yang B, Li HY, Wang M, Hu XF, Sun K, Zang ZG (2020) NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process. Sol RRL 4:1900363. https://doi.org/10.1002/solr.201900363

    Article  CAS  Google Scholar 

  30. Wang HX, Li HY, Cao SL, Wang M, Chen JZ, Zang ZG (2020) Interface modulator of ultrathin magnesium oxide for low-temperature-processed inorganic CsPbIBr2 perovskite solar cells with efficiency over 11%. Sol RRL 4:2000226. https://doi.org/10.1002/solr.202000226

    Article  CAS  Google Scholar 

  31. Cui HY, Sai QL, Qi HJ, Zhao JT, Si JL, Pan MY (2019) Analysis on the electronic trap of β-Ga2O3 single crystal. J Mater Sci 54:12643–12649. https://doi.org/10.1007/s10853-019-03777-1

    Article  CAS  Google Scholar 

  32. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crys A32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  33. Rao R, Rao AM, Xu B, Dong J, Sharma S, Sunkara MK (2005) Blueshifted Raman scattering and its correlation with the [110] growth direction in gallium oxide nanowires. J Appl Phys 98:094312–094315. https://doi.org/10.1063/1.2128044

    Article  CAS  Google Scholar 

  34. Santos NF, Rodrigues J, Fernandes AJS, Alves LC, Alves E, Costa FM, Monteiro T (2012) Optical properties of LFZ grown β Ga2O3:Eu3+ fibres. Appl Sur Sci 258:9157–9161. https://doi.org/10.1016/j.apsusc.2011.07.069

    Article  CAS  Google Scholar 

  35. Dohy D, Lucazeau G, Revcolevschi A (1982) Raman spectra and valence force field of single-crystalline β Ga2O3. J Sol St Chem 45:180–192. https://doi.org/10.1016/0022-4596(82)90274-2

    Article  CAS  Google Scholar 

  36. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, NIST, Gaithersburg MD, 20899, 2000. https://doi.org/10.18434/T4T88K

  37. Carli R, Bianchi C (1994) XPS analysis of gallium oxides. Appl Surf Sci 74:99–102. https://doi.org/10.1016/0169-4332(94)90104-X

    Article  CAS  Google Scholar 

  38. Lopez I, Utrilla AD, Nogales E, Mendez B, Piqueras J, Peche A, Ramírez-Castellanos J, González-Calbet JM (2012) In-Doped Gallium Oxide Micro- and Nanostructures: Morphology, Structure, and Luminescence Properties. J Phys Chem C 116:3935–3943. https://doi.org/10.1021/jp210233p

    Article  CAS  Google Scholar 

  39. Zade V, Mallesham B, Roy S, Shutthanandan V, Ramana CV (2019) Electronic Structure of Tungsten-Doped β-Ga2O3 Compounds. ECS J Solid State Sci Technol 8:Q3111–Q3115. https://doi.org/10.1149/2.0121907jss

    Article  CAS  Google Scholar 

  40. Varley JB, Weber JR, Janotti A, Van de Walle CG (2010) Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett 97:142106. https://doi.org/10.1063/1.3499306

    Article  CAS  Google Scholar 

  41. Li CD, Lv JP, Zhou B, Liang ZQ (2012) Influence of annealing atmosphere on optical properties of Al-doped ZnO powders. Phys Status Solidi A 209:1538–1542. https://doi.org/10.1002/pssa.201228004

    Article  CAS  Google Scholar 

  42. Bouaine A, Brihi N, Schmerber G, Ulhaq-Bouillet C, Colis S, Dinia A (2007) Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique. J Phys Chem C 111(7):2924–2928. https://doi.org/10.1021/jp066897p

    Article  CAS  Google Scholar 

  43. He H, Xing HZ, Liang EJ (2012) First principles study on the electronic properties of Cr, Fe, Mn and Ni doped β-Ga2O3. Adv Mater Res 535–537:36–41

    Article  Google Scholar 

  44. Fornari R, Kumar J (1990) Infrared absorption spectra in bulk Fe-doped InP. Appl Phys Lett 56:638. https://doi.org/10.1063/1.102722

    Article  CAS  Google Scholar 

  45. Yamaga M, Víllora EG, Shimamura K, Ichinose N, Honda M (2003) Donor structure and electric transport mechanism in β-Ga2O3. Phys Rev B 68:155207. https://doi.org/10.1103/PhysRevB.68.155207

    Article  CAS  Google Scholar 

  46. Bingel A, Fuchsel K, Kaiser N, Tunnermann A (2013) Pulsed DC magnetron sputtering of transparent conductive oxide layers. Chinese Optics Letters 11:S10201. https://doi.org/10.3788/COL201311.S10201

    Article  CAS  Google Scholar 

  47. Wang YS, Dickens PT, Varley JB et al (2018) Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence. Sci Rep 8:18075. https://doi.org/10.1038/s41598-018-36676-7

    Article  CAS  Google Scholar 

  48. Fleischer M, Hanrieder W, Meixner H (1990) Stability of semiconducting gallium oxide thin films. Thin Solid Films 190(1):93–102. https://doi.org/10.1016/0040-6090(90)90132-W

    Article  CAS  Google Scholar 

  49. Battiston GA, Gerbasi R, Porchia M, Bertoncello R, Caccavale F (1996) Chemical vapour deposition and characterization of gallium oxide thin films. Thin Solid Films 279(1–2):115–118. https://doi.org/10.1016/0040-6090(95)08161-5

    Article  CAS  Google Scholar 

  50. Spaeth JM, Overhof H (2003) Point ssnsulators. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-55615-9

    Article  Google Scholar 

  51. Weil JA, Bolton JR, Wertz JE (2007) Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed. John Wiley and Sons, New Jersey. https://doi.org/10.1063/1.2808029

  52. Watkins GD (1998) EPR and ENDOR studies of defects in semiconductors, in: M. Stavola (Ed.), Identification of Defects in Semiconductors. Semiconductors and Semimetals Series 51A:1-43, Academic Press, London. https://doi.org/10.1016/S0080-8784(08)63053-7

  53. Stehr JE, Meyer BK, Hofmann DM (2010) Magnetic resonance of impurities, intrinsic defects and dopants in ZnO. Appl Magn Reson 39:137–150. https://doi.org/10.1007/s00723-010-0142-z

    Article  CAS  Google Scholar 

  54. Schwidder M, Kumar MS, Klementiev K, Pohl MM, Brückner A, Grünert W (2005) Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe contentss Relations between active site structure and catalytic performance. Journal of Catalysis 231(2):314-330. https://doi.org/10.1016/j.jcat.2005.01.031

  55. Pérez-Ramirez J, Kumar MS, Brückner A (2004) Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. J Catalysis 223(1):13–27. https://doi.org/10.1016/j.jcat.2004.01.007

    Article  CAS  Google Scholar 

  56. Golding RM, Kestigian M, Tennant CW (1978) EPR of high-spin Fe3+ in calcium tungstate, CaWO4. J Phys C Solid State Physics 11(24):5041-5049. https://doi.org/10.1088/0022-3719/11/24/032/meta

  57. Aasa R (1983) Powder line shapes in the electron paramagnetic resonance spectra of high-spin ferric complexes. J Chem Phys 52:3919. https://doi.org/10.1063/1.1673591

    Article  Google Scholar 

  58. Goldfarb D, Bernardo M, Strohmaier KG, Vaughan DEW, Thomann H (1994) Characterization of iron in zeolites by X-band and Q-Band ESR, pulsed ESR, and UV-visible spectroscopies. J Am Chem Soc 116:6344–6353. https://doi.org/10.1021/ja00093a039

    Article  CAS  Google Scholar 

  59. Bruckner A, Lohse U, Mehner H (1998) The incorporation of iron ions in AlPO4-5 molecular sieves after microwave synthesis studied by EPR and Mössbauer spectroscopy. Microporous sssMesoporous Mater 20(1–3):207–215. https://doi.org/10.1016/S1387-1811(97)00041-3

    Article  CAS  Google Scholar 

  60. Goldman DS, Rossman GR (1977) The spectra of iron in orthopyroxene revisited: the splitting of the ground state. Am Mineral 62(1-2):151-152. https://resolver.caltech.edu/CaltechAUTHORS:20130513-110955692

  61. Piazzesi G, Nicosia D, Devadas M, Krocher O, Elsener M, Wokaun A (2007) Investigation of HNCO adsorption and hydrolysis on Fe-ZSM5. Catal Lett 115:33–39. https://doi.org/10.1007/s10562-007-9072-2

    Article  CAS  Google Scholar 

  62. Binet L, Gourier D (1998) Origin of the blue luminescence of β-Ga2O3. J Phys Chem Solids 59(8):1241–1249. https://doi.org/10.1016/S0022-3697(98)00047-X

    Article  CAS  Google Scholar 

  63. Müller KA, Schneider J (1963) Conduction electron spin resonance in group II–VI semiconductors and phosphors. Phys Lett 4(5):288–291. https://doi.org/10.1016/0031-9163(63)90604-8

    Article  Google Scholar 

  64. Bhattacharyya A, Schmidt MP, Stavitski E, Martínez CE (2018) Iron speciation in peats: chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates. Organic Geochem 115:124–137. https://doi.org/10.1016/j.orggeochem.2017.10.012

    Article  CAS  Google Scholar 

  65. Büscher R, Lehmann G (1987) Correlation of Zero-Field Splittings and Site Distortions. IX. Fe3+ and Cr3+ in β-Ga2O3. Zeitschrift für Naturforschung A 42(1):67-71. https://doi.org/10.1515/zna-1987-0111

  66. Wickramaratne D, Shen JX, Dreyer CE et al (2016) Iron as a source of efficient Shockley-Read-Hall recombination in GaN. Appl Phys Lett 109:162107. https://doi.org/10.1063/1.4964831

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [51802327, 51972319]; and the Science and Technology Commission of Shanghai Municipality (No. 19520744400) and the Guangxi Natural Science Foundation (No. 2018GXNSFAA138127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyu Wan.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Liu, H., Sai, Q. et al. Structural and electronic characteristics of Fe-doped β-Ga2O3 single crystals and the annealing effects. J Mater Sci 56, 13178–13189 (2021). https://doi.org/10.1007/s10853-021-06027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06027-5

Navigation