Skip to main content
Log in

Gecko foot-inspired reduced graphene oxide surface with multi-resistant, nonpolar/polar separation and reliable adhesion utility

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nature offers intriguing examples for adhesive surface with superhydrophobicity, like gecko foot hair and red rose petals. The superhydrophobic adhesion surface mainly depends on its ingenious hierarchical structure and chemical composition. Utilizing biomimetic strategy, we synthesized a fluorosulfurized reduced graphene oxide powder with a hierarchical structure by post-processing of graphene oxide. The adhesive fluorine-sulfurized reduced graphene cotton (AFC) was successfully prepared by ultrasonic soaking, self-assembly and drying. The water contact angle of AFC was 154° ± 1.4°, and its maximum adhesion force was about 102.9 ± 4.9 μN. The AFC exhibited excellent high superhydrophobic adhesive because it possessed not only the C–F bond and microscopic morphology of wrinkles and protrusions but also the inherent roughness of cotton fabrics. Importantly, the high superhydrophobic adhesive properties of AFC were not attenuated by sonication for 200 mins or UV exposure for 30 hours. Interestingly, AFC had prominent oleophobic properties for certain organic solvents (e.g., glycerol, ethylene glycol, etc.) with surface tensions greater than 30 mN/m. Finally, AFC was successfully used to nonpolar/polar separation and transfer droplets to various accepted surfaces (e.g., copper sheets, stainless steel mesh, plastics, etc.), demonstrating its great potential in liquid mixture separation and microdroplet transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Basak S (2020) Walking through the biomimetic bandages inspired by Gecko’s feet. Bio-Des Manuf 3:148–154. https://doi.org/10.1007/s42242-020-00069-5

    Article  Google Scholar 

  2. Tian H, Liu H, Shao J, Li S, Li X, Chen X (2020) An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko’s adhesive structures and toe muscles. Soft Matter 16:5599–5608. https://doi.org/10.1039/d0sm00787k

    Article  CAS  Google Scholar 

  3. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. https://doi.org/10.1039/tf9444000546

    Article  CAS  Google Scholar 

  4. Xu M, Sun G, Kim C (2014) Infinite lifetime of underwater superhydrophobic states. PhysRevLett 113:136103. https://doi.org/10.1103/PhysRevLett.113.136103

    Article  CAS  Google Scholar 

  5. Tuteja A, Choi W, Ma M, Rutledge G, McKinley G (2007) Designing superoleophobic surfaces. Science 318:1618–1622. https://doi.org/10.1126/science.1148326

    Article  CAS  Google Scholar 

  6. Chen L, Guo Z, Liu W (2016) Biomimetic multi-functional superamphiphobic FOTS-TiO2 particles beyond Lotus Leaf. ACS Appl Mater Inter 8:27188–27198. https://doi.org/10.1021/acsami.6b06772

    Article  CAS  Google Scholar 

  7. Liu YQ, Zhang YL, Fu XY, Sun H (2015) Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation. ACS Appl Mater Inter 7:20930–20936. https://doi.org/10.1021/acsami.5b06326

    Article  CAS  Google Scholar 

  8. Liu Y, Zhou J, Zhu E, Tang J, Liu X, Tang W (2015) Covalently intercalated graphene oxide for oil–water separation. Carbon 82:264–272. https://doi.org/10.1016/j.carbon.2014.10.070

    Article  CAS  Google Scholar 

  9. Rao CNR, Sood AK, Voggu R, Subrahmanyam KS (2010) Some novel attributes of graphene. The J Phys Chem Lett 1:572–580. https://doi.org/10.1021/jz9004174

    Article  CAS  Google Scholar 

  10. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  11. Jiang HB, Zhang YL, Han DD, Xia H, Feng J, Chen QD, Hong ZR, Sun HB (2014) Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv Fun Mater 24:4595–4602. https://doi.org/10.1002/adfm.201400296

    Article  CAS  Google Scholar 

  12. Feng L, Zhang YA, Xi JM, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119. https://doi.org/10.1021/la703821h

    Article  CAS  Google Scholar 

  13. Ding G, Jiao W, Wang R, Niu Y, Hao L, Yang F, Liu W (2017) Biomimetic, multifunctional, superhydrophobic graphene film with self-sensing and fast recovery properties for microdroplet transportation. J Mater Chem A 5:17325–17334. https://doi.org/10.1039/c7ta04696k

    Article  CAS  Google Scholar 

  14. Tan Y, Hu B, Chu Z, Wu W (2019) Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation. Adv Fun Mater 29:1900266. https://doi.org/10.1002/adfm.201900266

    Article  CAS  Google Scholar 

  15. Liu YQ, Han DD, Jiao ZZ, Liu Y, Jiang HB, Wu XH, Zhang LY, Sun HB (2017) Laser-structured Janus wire mesh for efficient oil-water separation. Nanoscale 9:17933–17938. https://doi.org/10.1039/c7nr06110b

    Article  CAS  Google Scholar 

  16. Huang Y, Li Y, Luo Q, Huang X (2021) One-step preparation of functional groups-rich graphene oxide and carbon nanotubes nanocomposite for efficient magnetic solid phase extraction of glucocorticoids in environmental waters. Chem Eng J 406:126785. https://doi.org/10.1016/j.cej.2020.126785

    Article  CAS  Google Scholar 

  17. Zhang L, Li H, Lai X, Su X, Liang T, Zeng X (2017) Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J 316:736–743. https://doi.org/10.1016/j.cej.2017.02.030

    Article  CAS  Google Scholar 

  18. Chen X, Lai D, Yuan B, Fu M (2019) Tuning oxygen clusters on graphene oxide to synthesize graphene aerogels with crumpled nanosheets for effective removal of organic pollutants. Carbon 143:897–907. https://doi.org/10.1016/j.carbon.2018.12.006

    Article  CAS  Google Scholar 

  19. Xu Q, Wan Y, Hu T, Liu T, Tao D, Niewiarowski P (2015) Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nat Commun 6:8949. https://doi.org/10.1038/ncomms9949

    Article  CAS  Google Scholar 

  20. Dong Y, Li J, Shi L, Wang X, Guo Z, Liu W (2014) Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chem Commun 50:5586–5589. https://doi.org/10.1039/c4cc01408a

    Article  CAS  Google Scholar 

  21. Xia C, Li Y, Fei T, Gong W (2018) Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation. Chem Eng J 345:648–658. https://doi.org/10.1016/j.cej.2018.01.079

    Article  CAS  Google Scholar 

  22. Shen JW, Wang Z, Wei X, Liu J, Wei Y (2018) Revealing the in situ NaF generation balance for user-friendly controlled synthesis of sub-10 nm monodisperse low-level Gd3+-doped β-NaYbF4: Er. RSC Adv 8:9611–9617. https://doi.org/10.1039/c8ra00655e

    Article  CAS  Google Scholar 

  23. Wu J, Li Z, Xie X, Tao K, Liu C, Khor KA, Miao J, Norford LK (2018) 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity. J Mater Chem A 6:478–488. https://doi.org/10.1039/c7ta08775f

    Article  CAS  Google Scholar 

  24. Chen J, Zhou Y, Zhou C, Wen X, Xu S, Cheng J, Pi P (2019) A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation. Chem Eng J 370:1218–1227. https://doi.org/10.1016/j.cej.2019.03.220

    Article  CAS  Google Scholar 

  25. Yun J, Khan FA, Baik S (2017) Janus graphene oxide sponges for high-purity fast separation of both water-in-oil and oil-in-water emulsions. ACS Appl Mater Inter 9:16694–16703. https://doi.org/10.1021/acsami.7b03322

    Article  CAS  Google Scholar 

  26. Xiang Z, Zhang L, Li Y, Yuan T, Zhang W, Sun J (2017) Reduced graphene oxide-reinforced polymeric films with excellent mechanical robustness and rapid and highly efficient healing properties. ACS Nano 11:7134–7141. https://doi.org/10.1021/acsnano.7b02970

    Article  CAS  Google Scholar 

  27. Wang J, Sun LY, Zou MH, Gao W, Liu C, Shang L, Gu Z, Zhao Y (2017) Bioinspired shape-memory graphene film with tunable wettability. Sci Adv 3:e1700004. https://doi.org/10.1126/sciadv.1700004

    Article  CAS  Google Scholar 

  28. Kim S, Zhou S, Hu Y, Acik M, Chabal YJ, Berger C, Heer WD, Bongiorno A, Riedo E (2012) Room-temperature metastability of multilayer graphene oxide films. Nat Mater 11:544–549. https://doi.org/10.1038/NMAT3316

    Article  CAS  Google Scholar 

  29. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152. https://doi.org/10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

  30. Guo G, Liu L, Zhang Q, Pan C, Zou Q (2018) Solution-processable, durable, scalable, fluorine-grafted graphene-based superhydrophobic coating for highly efficient oil/water separation under harsh environment. New J Chem 42:3819–3827. https://doi.org/10.1039/c7nj05182d

    Article  CAS  Google Scholar 

  31. Guo F, Wen QY, Peng YB, Guo Z (2017) Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties. J Colloid Interface Sci 494:54–63. https://doi.org/10.1016/j.jcis.2017.01.070

    Article  CAS  Google Scholar 

  32. Si YF, Guo ZG (2016) Bio-inspired writable multifunctional recycled paper with outer and inner uniform superhydrophobicity. RSC Adv 6:30776–30784. https://doi.org/10.1039/c6ra04259g

    Article  CAS  Google Scholar 

  33. Tie L, Li J, Guo Z, Liang Y, Liu W (2019) Controllable preparation of multiple superantiwetting surfaces: from dual to quadruple superlyophobicity. Chem Eng J 369:463–469. https://doi.org/10.1016/j.cej.2019.03.110

    Article  CAS  Google Scholar 

  34. Li Z, Zhang X, Tan H, Qi W, Wang L, Ali MC, Zhang H, Chen J, Hu P, Fan C, Qiu H (2018) Combustion fabrication of nanoporous graphene for ionic separation Membranes. Adv Fun Mater 28:1805026. https://doi.org/10.1002/adfm.201805026

    Article  CAS  Google Scholar 

  35. Hong S, Wang Y, Park SY, Lee H (2018) Progressive fuzzy cation-π assembly of biological catecholamines. Sci Adv. https://doi.org/10.1126/sciadv.aat7457

    Article  Google Scholar 

  36. Li L, Bai Y, Li L, Wang S, Zhang T (2017) A Superhydrophobic smart coating for flexible and wearable sensing electronics. Adv Mater 29:1702517. https://doi.org/10.1002/adma.201702517

    Article  CAS  Google Scholar 

  37. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Inds Eng Chem 28:988–994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  38. Ponor A, Hong L, Robinson IK, Granick S (2006) How water meets a hydrophobic surface. Phys Rev Lett 97:266101. https://doi.org/10.1103/PhysRevLett.97.266101

    Article  CAS  Google Scholar 

  39. Xu S, Wang Q, Wang N, Zheng X (2019) Fabrication of superhydrophobic green surfaces with good self-cleaning, chemical stability and anti-corrosion properties. J Mater Sci 54:13006–13016. https://doi.org/10.1007/s10853-019-03789-x

    Article  CAS  Google Scholar 

  40. Andrew MJE, Rodrigo L-A, Michael IN, Brown CV, McHale G (2016) Not spreading in reverse: the dewetting of a liquid film into a single drop. Sci Adv 2:e1600183. https://doi.org/10.1126/sciadv.1600183

    Article  CAS  Google Scholar 

  41. Cheng YT, Rodak DE (2005) Is the lotus leaf superhydrophobic? Appl Phys Lett 86:144101. https://doi.org/10.1063/1.1895487

    Article  CAS  Google Scholar 

  42. Song H, Ahmad NY, Yu M, Yang Y, Zhang J, Zhang H, Xun C, Mitter N, Yu C (2016) Silica nanopollens enhance adhesion for long-term bacterial inhibition. J Am Chem Soc 138:6455–6462. https://doi.org/10.1021/jacs.6b00243

    Article  CAS  Google Scholar 

  43. Autumn K, Liang Y, Hsieh S, Zesch W, Chan W, Kenny T, Fearing R, Ful R (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  CAS  Google Scholar 

  44. Hong X, Gao X, Jiang L (2007) Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J Am Chem Soc 129:1478–1479. https://doi.org/10.1021/ja065537c

    Article  CAS  Google Scholar 

  45. Sun X, Huang C, Wang L, Jiang L, Cheng Y, Fei W, Li Y (2020) Recent progress in graphene/polymer nanocomposites. Adv Mater 32:2001105. https://doi.org/10.1002/adma.202001105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51705138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchao Yang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Chen, Q., Yang, F. et al. Gecko foot-inspired reduced graphene oxide surface with multi-resistant, nonpolar/polar separation and reliable adhesion utility. J Mater Sci 56, 7372–7385 (2021). https://doi.org/10.1007/s10853-020-05765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05765-2

Navigation