Skip to main content
Log in

Tensile strain effects on electronic and optical properties of functionalized diamondene-like Si4

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using first-principles calculations, we systematically investigate the structures and properties of diamondene-like silicon monolayer (Si4). The Si4 is verified to be dynamically stable by its phonon dispersion spectrum and has a metal characteristics. Once hydrogenating and fluorinating the Si4, moderate indirect bandgaps are obtained in the hydride (Si4H2) and fluoride (Si4F2). Also, the bandgaps of the Si4H2 and Si4F2 can be tuned over a large range via the in-plane tensile strains, even with an indirect-to-direct bandgap transition at a small strain. Besides, the increasing tensile strain can enhance the light-harvesting ability of the Si4H2 and Si4F2 for the near-infrared and visible lights. The exciton binding energy can be significantly reduced with an increased tensile strain, being helpful for the separation of photogenerated electron–hole pairs. These findings extend the applications of the Si4 in optoelectronic devices.

Graphical abstract

Diamondene-like silicon monolayer (Si4) and its hydride (Si4H2) and fluoride (Si4F2)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Zhao J, Liu H, Yu Z et al (2016) Rise of silicene: a competitive 2D material. Prog Mater Sci 83:24–151

    Article  CAS  Google Scholar 

  3. Zhang K, Feng Y, Wang F et al (2017) Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C 5:11992–12022

    Article  CAS  Google Scholar 

  4. Yi Y, Sun Z, Li J et al (2019) Optical and optoelectronic properties of black phosphorus and recent photonic and optoelectronic applications. Small Methods 3:1900165–1-1900165–19

    Article  CAS  Google Scholar 

  5. Yang C, Wang HF, Xu Q (2020) Recent advances in two-dimensional materials for electrochemical energy storage and conversion. Chem Res Chin Univ 36:10–23

    Article  CAS  Google Scholar 

  6. Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377

    Article  CAS  Google Scholar 

  7. Tao L, Cinquanta E, Chiappe D et al (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227–231

    Article  CAS  Google Scholar 

  8. Ahmed S, Yi J (2017) Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-Effect transistors. Nano-Micro Lett 9(1):50–1–50–23

  9. Kwak DH, Ra HS, Jeong M-H et al (2018) High-performance photovoltaic effect with electrically balanced charge carriers in black phosphorus and WS2 heterojunction. Adv Mater Interfaces 5:1800671–1-1800671–7

    Article  CAS  Google Scholar 

  10. Wang L, Sambur JB (2019) Efficient ultrathin liquid junction photovoltaics based on transition metal dichalcogenides. Nano Lett 19:2960–2967

    Article  CAS  Google Scholar 

  11. Kang S, Lee D, Kim J et al (2020) 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. 2D Mater 7:022003–1–022003–22

  12. Cheng J, Gao L, Li T et al (2020) Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett 12:179–1–179–34

  13. Soares DM, Mukherjee S, Singh G (2020) TMDs beyond MoS2 for electrochemical energy storage. Chem Eur J 26:6320–6341

    Article  CAS  Google Scholar 

  14. Hussain S, Ullah N, Zhang Y et al (2019) One-step synthesis of unique catalyst Ni9S8@C for excellent MOR performances. Int J Hydrog Energy 44:24525–24533

    Article  CAS  Google Scholar 

  15. Hussain S, Yang X, Aslam MK et al (2020) Robust TiN nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations. Chem Eng J 391:123595–1-123595–11

    Article  CAS  Google Scholar 

  16. Hussain S, Javed MS, Asim S et al (2020) Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram Int 46:6406–6412

    Article  CAS  Google Scholar 

  17. Vogt P, De Padova P, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501–1-155501–5

    Google Scholar 

  18. Wei W, Jacob T (2013) Strong many-body effects in silicene-based structures. Phys Rev B 88:045203–1-045203–7

    Google Scholar 

  19. Sivek J, Sahin H, Partoens B, Peeters FM (2013) Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: stability and electronic and phonon properties. Phys Rev B 87:085444–1-085444–8

    Article  CAS  Google Scholar 

  20. Liu CC, Feng W, Yao Y (2011) Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107:076802–1-076802–4

    Google Scholar 

  21. Molle A, Goldberger J, Houssa M et al (2017) Buckled two-dimensional Xene sheets. Nat Mater 16:163–169

    Article  CAS  Google Scholar 

  22. Drummond ND, Zólyomi V, Fal’ko VI, (2012) Electrically tunable band gap in silicene. Phys Rev B 85:075423–1-075423–7

    Article  CAS  Google Scholar 

  23. Rachel S, Ezawa M (2014) Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene. Phys Rev B 89:195303–1-195303–6

    Article  CAS  Google Scholar 

  24. Cahangirov S, Topsakal M, Aktürk E et al (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804–1-236804–4

    Article  CAS  Google Scholar 

  25. Quhe R, Fei R, Liu Q et al (2012) Tunable and sizable band gap in silicene by surface adsorption. Sci Rep 2:853–1–853–6

  26. Shu H, Wang S, Li Y et al (2014) Tunable electronic and optical properties of monolayer silicane under tensile strain: a many-body study. J Chem Phys 141:064707–1-064707–6

    Article  CAS  Google Scholar 

  27. Ni Z, Liu Q, Tang K et al (2012) Tunable bandgap in silicene and germanene. Nano Lett 12:113–118

    Article  CAS  Google Scholar 

  28. Zhao H (2012) Strain and chirality effects on the mechanical and electronic properties of silicene and silicane under uniaxial tension. Phys Lett A 376:3546–3550

    Article  CAS  Google Scholar 

  29. Shu H, Tong Y, Guo J (2017) Novel electronic and optical properties of ultrathin silicene/arsenene heterostructures and electric field effects. Phys Chem Chem Phys 19:10644–10650

    Article  CAS  Google Scholar 

  30. Chen X, Jiang J, Liang Q et al (2016) The electronic and optical properties of silicene/g-ZnS heterobilayers: a theoretical study. J Mater Chem C 4:7004–7012

    Article  CAS  Google Scholar 

  31. Molle A, Grazianetti C, Tao L et al (2018) Silicene, silicene derivatives, and their device applications. Chem Soc Rev 47:6370–6387

    Article  CAS  Google Scholar 

  32. Rui W, Shaofeng W, Xiaozhi W (2014) The formation and electronic properties of hydrogenated bilayer silicene from first-principles. J Appl Phys 116:024303–1-024303–7

    Article  CAS  Google Scholar 

  33. Fu H, Zhang J, Ding Z et al (2014) Stacking-dependent electronic structure of bilayer silicene. Appl Phys Lett 104:131904–1-131904–5

    Google Scholar 

  34. Da H, Ding W, Yan X (2017) Magneto-optical manifestation of bilayer silicene. Appl Phys Lett 110:141105–1-141105–5

    Article  CAS  Google Scholar 

  35. Liu F, Liu CC, Wu K et al (2013) d+id‘ Chiral superconductivity in bilayer silicene. Phys Rev Lett 111:066804–1-066804–5

    Google Scholar 

  36. Ezawa M (2012) Quasi-topological insulator and trigonal warping in gated bilayer silicene. J Phys Soc Jpn 81:104713–1-104713–8

    Google Scholar 

  37. Qian C, Li Z (2020) Multilayer silicene: structure, electronics, and mechanical property. Comput Mater Sci 172:109354–1-109354–8

    Article  CAS  Google Scholar 

  38. Martins LGP, Matos MJS, Paschoal AR et al (2017) Raman evidence for pressure-induced formation of diamondene. Nat Commun 8:96–1–96–9

  39. Gao Y, Cao T, Cellini F et al (2018) Ultrahard carbon film from epitaxial two-layer graphene. Nat Nanotechnol 13:133–138

    Article  CAS  Google Scholar 

  40. Bakharev PV, Huang M, Saxena M et al (2020) Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat Nanotechnol 15:59–66

    Article  CAS  Google Scholar 

  41. Mu Y (2015) Chemical functionalization of GaN monolayer by adatom adsorption. J Phys Chem C 119:20911–20916

    Article  CAS  Google Scholar 

  42. Shu H, Niu X, Ding X, Wang Y (2019) Effects of strain and surface modification on stability, electronic and optical properties of GaN monolayer. Appl Surf Sci 479:475–481

    Article  CAS  Google Scholar 

  43. Liu N, Bo G, Liu Y et al (2019) Recent progress on germanene and functionalized germanene: preparation, characterizations, applications, and challenges. Small 15:1805147–1–1805147–11

  44. Rosli NF, Rohaizad N, Sturala J et al (2020) Siloxene, germanane, and methylgermanane: functionalized 2D materials of group 14 for Electrochemical Applications. Adv Funct Mater 30:1910186–1-1910186–11

    Article  CAS  Google Scholar 

  45. Ye ZQ, Cao BY (2016) Nanoscale thermal cloaking in graphene via chemical functionalization. Phys Chem Chem Phys 18:32952–32961

    Article  CAS  Google Scholar 

  46. Pumera M, Sofer Z (2017) Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chem Soc Rev 46:4450–4463

    Article  CAS  Google Scholar 

  47. Ding Y, Wang Y (2012) Electronic structures of silicene fluoride and hydride. Appl Phys Lett 100:083102–1-083102–4

    Google Scholar 

  48. Hartman T, Sofer Z (2019) Beyond graphene: chemistry of group 14 graphene analogues: silicene, germanene, and stanene. ACS Nano 13:8566–8576

    Article  CAS  Google Scholar 

  49. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502–1-395502–19

    Article  Google Scholar 

  50. Marini A, Hogan C, Grüning M, Varsano D (2009) yambo: an ab initio tool for excited state calculations. Comput Phys Commun 180:1392–1403

    Article  CAS  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  52. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  CAS  Google Scholar 

  53. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  54. Rohlfing M, Louie SG (2000) Electron-hole excitations and optical spectra from first principles. Phys Rev B 62:4927–4944

    Article  CAS  Google Scholar 

  55. Ahuja R, Auluck S, Wills JM et al (1997) Optical properties of graphite from first-principles calculations. Phys Rev B 56:12652–12652

    Article  CAS  Google Scholar 

  56. Oschlies A, Godby RW, Needs RJ (1995) GW self-energy calculations of carrier-induced band-gap narrowing in n-type silicon. Phys Rev B 51:1527–1535

    Article  CAS  Google Scholar 

  57. Salpeter EE, Bethe HA (1951) A relativistic equation for bound-state problems. Phys Rev 84:1232–1242

    Article  Google Scholar 

  58. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659

    Article  CAS  Google Scholar 

  59. Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG (2004) Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 92:077402–1-077402–4

    Article  CAS  Google Scholar 

  60. Yang L, Deslippe J, Park C-H et al (2009) Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 103:186802–1-186802–4

    Google Scholar 

  61. Zhang Z, Liu X, Yakobson BI, Guo W (2012) Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J Am Chem Soc 134:19326–19329

    Article  CAS  Google Scholar 

  62. Mahata A, Garg P, Rawat KS et al (2017) A free-standing platinum monolayer as an efficient and selective catalyst for the oxygen reduction reaction. J Mater Chem A 5:5303–5313

    Article  CAS  Google Scholar 

  63. Yang S, Qin Y, Chen B et al (2017) Novel surface molecular functionalization route to enhance environmental stability of tellurium-containing 2D layers. ACS Appl Mater Interfaces 9:44625–44631

    Article  CAS  Google Scholar 

  64. Ryder CR, Wood JD, Wells SA et al (2016) Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem 8:597–602

    Article  CAS  Google Scholar 

  65. Jiang S, Butler S, Bianco E et al (2014) Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat Commun 5:3389–1–3389–6

  66. Bissett MA, Tsuji M, Ago H (2014) Strain engineering the properties of graphene and other two-dimensional crystals. Phys Chem Chem Phys 16:11124–11138

    Article  CAS  Google Scholar 

  67. Deng S, Sumant AV, Berry V (2018) Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22:14–35

    Article  CAS  Google Scholar 

  68. Zhao JZ, Chen LC, Xu B et al (2020) Strain-tunable out-of-plane polarization in two-dimensional materials. Phys Rev B 101:121407–1-121407–5

    Google Scholar 

  69. Annett J, Cross GLW (2016) Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535:271–275

    Article  CAS  Google Scholar 

  70. Pei QX, Sha ZD, Zhang YY, Zhang YW (2014) Effects of temperature and strain rate on the mechanical properties of silicene. J Appl Phys 115:023519–1-023519–6

    Article  CAS  Google Scholar 

  71. Pei QX, Zhang YW, Shenoy VB (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48:898–904

    Article  CAS  Google Scholar 

  72. Sun Y, Liu K (2019) Strain engineering in functional 2-dimensional materials. J Appl Phys 125:082402–1-082402–11

    Google Scholar 

  73. Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89:235319–1–323519

    Google Scholar 

  74. Cheiwchanchamnangij T, Lambrecht WRL (2012) Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B 85:205302–1-205302–5

    Article  CAS  Google Scholar 

  75. Shan W, Little BD, Fischer AJ et al (1996) Binding energy for the intrinsic excitons in wurtzite GaN. Phys Rev B 54:16369–16372

    Article  CAS  Google Scholar 

  76. Villegas CEP, Rodin AS, Carvalho A, Rocha AR (2016) Two-dimensional exciton properties in monolayer semiconducting phosphorus allotropes. Phys Chem Chem Phys 18:27829–27836

    Article  CAS  Google Scholar 

  77. Shu H, Guo J, Niu X (2019) Electronic, photocatalytic, and optical properties of two-dimensional boron pnictides. J Mater Sci 54:2278–2288https://doi.org/10.1007/s10853-018-2987-8

    Article  CAS  Google Scholar 

  78. Cui J, Peng Q, Zhou J, Sun Z (2019) Strain-tunable electronic structures and optical properties of semiconducting MXenes. Nanotechnology 30:345205–1-345205–8

    Google Scholar 

Download references

Acknowledgements

This study was funded by Jiangsu University of Science and Technology (No. 1052931610). I thank Dr. Minglei Sun (King Abdullah University of Science and Technology) for providing my help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabing Shu.

Ethics declarations

Conflict of interest

The author declares that they have no competing interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary Information.

Supplementary file 1 (DOCX 2,689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, H. Tensile strain effects on electronic and optical properties of functionalized diamondene-like Si4. J Mater Sci 56, 5684–5696 (2021). https://doi.org/10.1007/s10853-020-05622-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05622-2

Navigation