Skip to main content
Log in

Finely modulating the morphology and composition of CuxNi1−x for enhanced microwave absorption capability

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Some inevitable disadvantages (being thick and heavy with narrow broadband) restrict the application of Cu-based absorbers in microwave absorption field, which can be overcome by finely modulating the morphology and component of 1D structures. Here, we reported ethylenediamine-steered in situ two-step reduction reactions, which allowed the tunable preparation of CuxNi1−x (x = 0, 0.005, 0.02, 0.0344, 0.0934, 0.1581, 0.2243, and 1) composites with continuously tunable components and morphology varying from smooth rods to urchin-like rods and microspheres. The recombination of Ni with Cu into CuxNi1−x composites can tune crystallite size, inner stress, lattice constant, component, shape as well as properties. The CuxNi1−x (x = 0.0344–0.1581) composites exhibited stronger and wider absorption band under a lower filling mass fraction and thinner sample than other Cu-based absorbers. Due to the combined action of double dielectric relaxation, double magnetic resonances, high attenuation, and good impedance match. The optimal microwave absorption capability (MACs) was achieved for Cu0.0344Ni0.9656 microspheres with a maximum RL value of − 67.5 dB at 14.74 GHz and a broad frequency band (99% attenuation) of 15.41 GHz, corresponding to 1.7–10 mm sample thickness. Owing to tunable saturation magnetization and excellent MACs, the CuxNi1−x composites can work as a kind of promising absorber for applications in electronic equipment and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Cheng Y, Ji GB, Li ZY, Lv HL, Liu W, Zhao Y, Cao JM, Du YW (2017) Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio. J Alloy Compd 704:289–295

    CAS  Google Scholar 

  2. He N, He ZD, Liu L, Lu Y, Wang FQ, Wu WH, Tong GX (2019) Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1−x alloy hollow microspheres. Chem Eng J 381:122743

    Google Scholar 

  3. Zhao B, Liang LY, Deng JS, Bai ZY, Liu JW, Guo XQ, Gao K, Guo WH, Zhang R (2017) 1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties. CrystEngComm 19:6579–6587

    CAS  Google Scholar 

  4. Chen H, Yao SY, Lin WW, Zhang ZH, Hu XB, Liu X, Yan BH, Chen KQ, Qin Y, Zhu YM, Lu XY, Ouyang PK, Fu J, Chen JGG (2020) Highly efficient conversion of oleic acid to heptadecane without external hydrogen source over atomic layer deposited bimetallic NiPt catalysts. Chem Eng J 390:124603

    CAS  Google Scholar 

  5. Braga AH, Costa NJS, Philippot K, Goncalves RV, Szanyi J, Rossi LM (2020) Structure and activity of supported bimetallic NiPd nanoparticles: influence of preparation method on CO2 reduction. Chemcatchem. https://doi.org/10.1002/cctc.201902329

    Article  Google Scholar 

  6. Li L, Wang YZ, Wang XX, Song KK, Jian XD, Qian P, Bai Y, Su YJ (2020) Size and stoichiometry effect of FePt bimetal nanoparticle catalyst for CO oxidation: a DFT study. J Phys Chem C 124:8706–8715

    CAS  Google Scholar 

  7. Li JJ, Zhang YH, Tian CY, Zhou HJ, Hu GM, Xia R (2020) Structurally ordered nanoporous Pt–Co alloys with enhanced mechanical behaviors in tension. Microporous Mesoporous Mater 295:109955

    CAS  Google Scholar 

  8. Wang YJ, Sun Y, Zong Y, Zhu TG, Zhang LX, Li XH, Xing HN, Zheng XL (2020) Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance. J Alloy Compd 824:153980

    CAS  Google Scholar 

  9. Sun YT, Du CP, Wu MY, Zhao L, Yu SH, Gong BM, Ding Q (2020) Synchronously improved reliability, figure of merit and adhesion of flexible copper nanowire networks by chitosan transition. Nanotechnology. https://doi.org/10.1088/1361-6528/ab967b

    Article  Google Scholar 

  10. Ravindren R, Mondal S, Nath K, Das NC (2019) Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos Part B Eng 164:559–569

    CAS  Google Scholar 

  11. Wu ST, Zou MC, Li ZC, Chen DQ, Zhang H, Yuan YJ, Pei YM, Cao AY (2018) Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14:1800634

    Google Scholar 

  12. Sun YP, Feng C, Liu XG, Or SW, Jin CG (2014) Synthesis, characterization and microwave absorption of carbon-coated Cu nanocapsules. Mater Res 17:477–482

    CAS  Google Scholar 

  13. He N, Liu MM, Qi JY, Tong JY, Sao W, Yang XC, Shi LX, Tong GX (2019) Plasmon resonance strategy to enhance permittivity and microwave absorbing performance of Cu/C core-shell nanowires. Chem Eng J 378:122160

    CAS  Google Scholar 

  14. Zong M, Huang Y, Wu HW, Zhao Y, Liu PB, Wang L (2013) Facile preparation of RGO/Cu2O/Cu composite and its excellent microwave absorption properties. Mater Lett 109:112–115

    CAS  Google Scholar 

  15. Kumar A, Singh AP, Kumari S, Srivastava AK, Bathula S, Dhawan SK, Dutta PK, Dhar A (2015) EM shielding effectiveness of Pd-CNT-Cu nanocomposite buckypaper. J Mater Chem A 3:13986–13993

    CAS  Google Scholar 

  16. Wang XX, Zhang BQ, Zhang W, Yu MX, Cui L, Cao XY, Liu JQ (2017) Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance. Sci Rep 7:1584

    Google Scholar 

  17. Zhao B, Zhao WY, Shao G, Fan BB, Zhang R (2015) Morphology-control synthesis of a core − shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Int 7:12951–12960

    CAS  Google Scholar 

  18. Wang XX, Dong LF, Zhang BQ, Yu MX, Liu JQ (2016) Controlled growth of Cu–Ni nanowires and nanospheres for enhanced microwave absorption properties. Nanotechnology 27:125602

    Google Scholar 

  19. Qi XS, Yang Y, Zhong W, Qin C, Deng Y, Au C, Du YW (2010) Simultaneous synthesis of carbon nanobelts and carbon/Fe–Cu hybrids for microwave absorption. Carbon 48:3512–3522

    CAS  Google Scholar 

  20. Wu T, Zhao YT, Li YN, Wu WH, Tong GX (2017) Controllable synthesis of CuxFe3−xO4@Cu core-shell hollow spherical chains for broadband, lightweight microwave absorption. ChemCatChem 9:3486–3496

    CAS  Google Scholar 

  21. He N, Yang XF, Ji R, Fu SH, Tong GX, Wu WH (2020) Polarization and matching modulation of peapod-like Cu/C nanowires to improve microwave absorption. J Alloys Compd 822:153633

    CAS  Google Scholar 

  22. Li XR, Wang YQ, Song GJ, Peng Z, Yu YM, She XL, Sun J, Li JJ, Li PD, Wang ZF, Duan XF (2010) Fabrication and magnetic properties of Ni/Cu shell/core nanocable arrays. J Phys Chem C 114:6914–6916

    CAS  Google Scholar 

  23. Ding RM, Liu JP, Jiang J, Wu F, Zhu JH, Huang XT (2011) Tailored Ni–Cu alloy hierarchical porous nanowire as a potential efficient catalyst for DMFCs. Catal Sci Technol 1:1406–1411

    CAS  Google Scholar 

  24. Choi BN, Chun WW, Qian A, Lee SJ, Chung CH (2015) Dendritic Ni(Cu)–polypyrrole hybrid films for a pseudo-capacitor. Nanoscale 7:18561–18569

    CAS  Google Scholar 

  25. Nady H, Negem M (2016) Ni–Cu nano-crystalline alloys for efficient electrochemical hydrogen production in acid water. RSC Adv 6:51111–51119

    CAS  Google Scholar 

  26. Wang QT, Wang GZ, Han XH, Wang XP, Hou JG (2005) Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays: a one-step coelectrodeposition and electrochemical etching method. J Phys Chem B 109:23326–23329

    CAS  Google Scholar 

  27. Sunab XZ, Du FL (2015) Synthesis under mild conditions and high catalytic property of bimetal Ni–Cu/SiO2 hollow spheres. RSC Adv 5:102436–102440

    Google Scholar 

  28. Liu LJ, Guan JG, Shi WD, Sun ZG, Zhao JS (2010) Facile synthesis and growth mechanism of flowerlike Ni-Fe alloy nanostructures. J Phys Chem C 114:13565–13570

    CAS  Google Scholar 

  29. Chen SH, Carroll DL (2004) Silver nanoplates: size control in two dimensions and formation mechanisms. J Phys Chem B 108:5500–5506

    CAS  Google Scholar 

  30. Leng YH, Zhang YH, Liu T, Suzuki M, Li XG (2006) Synthesis of single crystalline triangular and hexagonal Ni nanosheets with enhanced magnetic properties. Nanotechnology 17:1797–1800

    CAS  Google Scholar 

  31. Xu R, Xie T, Zhao YG, Li YD (2007) Single-crystal metal nanoplatelets: cobalt, nickel, copper, and silver. Cryst Growth Des 7:1904–1911

    CAS  Google Scholar 

  32. Lee JH, Kamada K, Enomoto N, Hojo J (2008) Polyhedral gold nanoplate: high fraction synthesis of two-dimensional nanoparticles through rapid heating process. Cryst Growth Des 8:2638–2645

    CAS  Google Scholar 

  33. Cullity BD, Graham CD (2008) Introduction to magnetic materials, 2nd edn. Wiley-IEEE, New York

    Google Scholar 

  34. Zhang SM, Zeng HC (2009) Self-assembled hollow spheres of β-Ni(OH)2 and their derived nanomaterials. Chem Mater 21:871–883

    CAS  Google Scholar 

  35. Kim MJ, Flowers PF, Stewart IE, Ye SR, Baek S, Kim JJ, Wiley BJ (2017) Ethylenediamine promotes Cu nanowire growth by inhibiting oxidation of Cu(111). J Am Chem Soc 139:277–284

    CAS  Google Scholar 

  36. Tong GX, Hu Q, Wu WH, Li W, Qian HS, Liang Y (2012) Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties. J Mater Chem 22:17494–17504

    CAS  Google Scholar 

  37. Tong GX, Liu FT, Wu WH, Du FF, Guan JG (2014) Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J Mater Chem A 2:7373–7382

    CAS  Google Scholar 

  38. Zhang SM, Zeng HC (2010) Solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. Chem Mater 22:1282–1284

    Google Scholar 

  39. Wen SL, Liu Y, Zhao XC, Cheng JW, Li H (2014) Synthesis, dual-nonlinear magnetic resonance, and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys Chem Chem Phys 16:18333–18340

    CAS  Google Scholar 

  40. Gao SS, Zhou N, An QD, Xiao ZY, Zhai SR, Shi Z (2017) Facile solvothermal synthesis of novel hetero-structured CoNi–CuO composites with excellent microwave absorption performance. RSC Adv 7:43689–43699

    CAS  Google Scholar 

  41. Ni XM, Zhao QB, Zheng HG, Li BB, Song JM, Zhang DG, Zhang XJ (2005) A novel chemical reduction route towards the synthesis of crystalline nickel nanoflowers from a mixed source. Eur J Inorg Chem 23:4788–4793

    Google Scholar 

  42. Tong GX, Liu Y, Wu T, Tong CL, Du FF (2015) H2O-steered size/phase evolution and magnetic properties of large-scale, monodisperse FexOy nanomaterials. J Mater Chem C 3:5506–5515

    CAS  Google Scholar 

  43. Kuchi R, Latif T, Lee SW, Dongquoc V, Van PC, Kim D, Jeong JR (2020) Controlling the electric permittivity of honeycomb-like core–shell Ni/CuSiO3 composite nanospheres to enhance microwave absorption properties. RSC Adv 10:1172–1180

    CAS  Google Scholar 

  44. Zhou SH, Huang Y, Liu XD, Yan J, Feng XS (2018) Synthesis and microwave absorption enhancement of CoNi@SiO2@C hierarchical structures. Ind Eng Chem Res 57:5507–5516

    CAS  Google Scholar 

  45. Zhao HT, Li ZG, Zhang N, Du YC, Xu P (2016) Gamma irradiation induced synthesis of electromagnetic functionalized aligned CoxNi1−x alloy nanobundles. RSC Adv 6:72263–72268

    CAS  Google Scholar 

  46. Wang H, Dai YY, Geng DY, Ma S, Li D, An J, He J, Liu W, Zhang ZD (2015) CoxNi100−x nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption. Nanoscale 7:17312–17319

    CAS  Google Scholar 

  47. Wang H, Dai YY, Gong WJ, Geng DY, Ma S, Li D, Liu W, Zhang ZD (2013) Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl Phys Lett 102:223113

    Google Scholar 

  48. Quan B, Liang XH, Ji GB, Cheng Y, Liu W, Ma JN, Zhang YN, Li DR, Xu GY (2017) Dielectric polarization in electromagnetic wave absorption: review and perspective. J Alloy Compd 728:1065–1075

    CAS  Google Scholar 

  49. Lv HL, Guo YH, Zhao Y, Zhang HQ, Zhang BS, Ji GB, Xu ZJ (2016) Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon 110:130–137

    CAS  Google Scholar 

  50. Liu Y, Fu YW, Liu L, Li W, Guan JG, Tong GX (2018) Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core–shell nanosheets for improved microwave absorption. ACS Appl Mater Inter 10:16511–16520

    CAS  Google Scholar 

  51. Tong GX, Liu Y, Cui TT, Li YN, Zhao YT, Guan JG (2016) Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings. Appl Phys Lett 108:072905

    Google Scholar 

  52. Liu L, He N, Wu T, Hu PB, Tong GX (2019) Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem Eng J 335:103–108

    Google Scholar 

Download references

Acknowledgements

Support from the National Natural Scientific Foundation of China (51672252), Public Utility Items of Zhejiang Province (2015C31022), and Natural Scientific Foundation of Zhejiang Province (LY14B010001) is appreciated.

Author information

Authors and Affiliations

Authors

Contributions

ML wrote the original draft. YC measured the performance. HW contributed to characterization. LK contributed to synthetic materials. GT contributed to formal analysis and writing of the original draft. WW curated the data.

Corresponding author

Correspondence to Guoxiu Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Chen, Y., Wei, H. et al. Finely modulating the morphology and composition of CuxNi1−x for enhanced microwave absorption capability. J Mater Sci 55, 12953–12968 (2020). https://doi.org/10.1007/s10853-020-04958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04958-z

Navigation