Skip to main content

Advertisement

Log in

High strain and high energy density of lead-free (Bi0.50Na0.40K0.10)0.94Ba0.06Ti(1−x)(Al0.50Ta0.50)xO3 perovskite ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free perovskite materials for capacitors have been recognized worldwide attention in recent times with high storage energy density and efficiency. A series of (Bi0.50Na0.40K0.10)0.94Ba0.06Ti(1−x)(Al0.50Ta0.50)xO3 ceramics are synthesized using traditional mixed oxide route. All ceramics are in single-phase perovskite-like structure. At room temperature, high storage energy density, Wr ~ 1.67 J/cm3, and conversion efficiency, η ~ 81.46%, are perceived for x = 0.06 composition at 115 kV/cm. Temperature-dependent study obtains Wr ~ 1.21 J/cm3 and η ~ 84.96% at 80 °C with 80 kV/cm field. In addition, composition x = 0.06 is fatigue-free from 1 to 105 cycles measured at 80 kV/cm field. Furthermore, ceramic x = 0.04 is obtained a high bipolar strain ~ 0.31% at 80 kV/cm compared to other compositions. Hence, the compositions x = 0.06 for high energy density and x = 0.04 for strain might be useable in many electronic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Wang H, Jiang X, Liu X, Yang R, Yang Y, Zheng Q, Kwok KW, Lin D (2019) An effective approach to achieve high energy storage density and efficiency in BNT-based ceramics by doping AgNbO3. Dalton Trans 48:17864–17873

    Article  CAS  Google Scholar 

  2. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524

    Article  Google Scholar 

  3. Wang K, Hussain A, Jo W, Rödel J (2012) Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics. J Am Ceram Soc 95:2241–2247

    Article  CAS  Google Scholar 

  4. Yoshii K, Hiruma Y, Nagata H, Takenaka T (2006) Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn J Appl Phys 45:4493–4496

    Article  CAS  Google Scholar 

  5. Gao S, Yao Z, Ning L, Dong G, Fan H, Li Q (2017) enhanced bipolar strain response in lithium/niobium Co-doped sodium–barium bismuth titanate lead-free ceramics. Adv Eng Mater 19:1700125. https://doi.org/10.1002/adem.201700125

    Article  CAS  Google Scholar 

  6. Hao J, Xu Z, Chu R, Li W, Fu P, Du J, Li G (2017) Fatigue-resistant, temperature-insensitive strain behavior and strong red photoluminescence in Pr-modified 0.92(Bi0.5Na0.5)TiO3–0.08(Ba0.90Ca0.10)(Ti0.92Sn0.08)O3 lead-free ceramics. J Eur Ceram Soc 37:877–882

    Article  CAS  Google Scholar 

  7. Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 105:094102. https://doi.org/10.1063/1.3121203

    Article  CAS  Google Scholar 

  8. Zhao Y, Xu J, Yang L, Zhou C, Lu X, Yuan C, Li Q, Chen G, Wang H (2016) High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex-ion. J Alloys Compd 666:209–216

    Article  CAS  Google Scholar 

  9. Cheng R, Xu Z, Chu R, Hao J, Du J, Li G (2016) Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J Eur Ceram Soc 36:489–496

    Article  CAS  Google Scholar 

  10. Yadav AK, Fan H, Yan B, Wang C, Ma J, Zhang M, Wang W, Dong W, Wang S (2020) Enhanced storage energy density and fatigue free properties for 0.94Bi0.50(Na0.78K0.22)0.50Ti1x(Al0.50Nb0.50)xO3–0.06BaZrO3 ceramics. Ceram Int 46:17044–17052

    Article  CAS  Google Scholar 

  11. Yan B, Fan H, Wang C, Zhang M, Yadav AK, Zheng X, Wang H, Du Z (2020) Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 lead-free ceramics. Ceram Int 46:281–288

    Article  CAS  Google Scholar 

  12. Bai W, Bian Y, Hao J, Shen B, Zhai J (2013) The composition and temperature-dependent structure evolution and large strain response in (1−x)(Bi0.5Na0.5)TiO3–xBa(Al0.5Ta0.5)O3 ceramics. J Am Ceram Soc 96:246–252

    Article  CAS  Google Scholar 

  13. Sui J, Fan H, Peng H, Ma J, Yadav AK, Chao W, Zhang M, Dong G (2019) Enhanced energy-storage performance and temperature-stable dielectric properties of (1–x)[(Na0.5Bi0.5)0.95Ba0.05]0.98La0.02TiO3–xK0.5Na0.5NbO3 lead-free ceramics. Ceram Int 45:20427–20434

    Article  CAS  Google Scholar 

  14. Li F, Zhai J, Shen B, Liu X, Yang K, Zhang Y, Li P, Liu B, Zeng H (2017) Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3–SrTiO3–NaNbO3 lead-free ferroelectric ceramics. J Appl Phys 121:054103. https://doi.org/10.1063/1.4975409

    Article  CAS  Google Scholar 

  15. Li F, Chen G, Liu X, Zhai J, Shen B, Zeng H, Li S, Li P, Yang K, Yan H (2017) Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3–BaTiO3–(Sr0.7Bi0.2□0.1)TiO3 ceramics. J Eur Ceram Soc 37:4732–4740

    Article  CAS  Google Scholar 

  16. Jin CC, Wang FF, Wei LL, Tang J, Li Y, Yao QR, Tian CY, Shi WZ (2014) Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions. J Alloys Compd 585:185–191

    Article  CAS  Google Scholar 

  17. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  18. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  19. Xu Y, Guo Y, Liu Q, Wang G, Bai J, Tian J, Lin L, Tian Y (2020) High energy storage properties of lead-free Mn-doped (1−x)AgNbO3−xBi0.5Na0.5TiO3 antiferroelectric ceramics. J Eur Ceram Soc 40:56–62

    Article  CAS  Google Scholar 

  20. Yadav AK, Verma A, Kumar S, Srihari V, Sinha AK, Reddy VR, Liu SW, Biring S, Sen S (2018) Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1x)LaxTi(1x)AlxO3 ceramics. J Appl Phys 123:124102. https://doi.org/10.1063/1.5017765

    Article  CAS  Google Scholar 

  21. Liu X, Zhai J, Shen B, Li F, Zhang Y, Li P, Liu B (2017) Study of temperature-induced structural evolution in (Na0.5Bi0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 lead-free ceramics. Curr Appl Phys 17:774–780

    Article  Google Scholar 

  22. Schütz D, Deluca M, Krauss W, Feteira A, Jackson T, Reichmann K (2012) Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 22:2285–2294

    Article  CAS  Google Scholar 

  23. Trujillo S, Kreisel J, Jiang Q, Smith JH, Thomas PA, Bouvier P, Weiss F (2005) The high-pressure behaviour of Ba-doped Na1/2Bi1/2TiO3 investigated by Raman spectroscopy. J Phys Condens Matter 17:6587–6597

    Article  CAS  Google Scholar 

  24. Kreisel J, Glazer AM, Bouvier P, Lucazeau G (2001) High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3 perovskite. Phys Rev B 63:174106

    Article  CAS  Google Scholar 

  25. Verma A, Yadav AK, Kumar S, Srihari V, Rajput P, Reddy VR, Jangir R, Poshwal HK, Liu SW, Biring S, Sen S (2018) Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.50Bi0.50)TiO30.06BaTiO3 ceramics. J Appl Phys 123:224101. https://doi.org/10.1063/1.5036927

    Article  CAS  Google Scholar 

  26. Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 29:71–93

    Article  CAS  Google Scholar 

  27. Yadav AK, Verma A, Singh B, Kumar D, Kumar S, Srihari V, Poshwal HK, Kumar P, Liu S-W, Biring S, Sen S (2018) (Pb1xBix)(Ti1xMnx)O3: competing mechanism of tetragonal-cubic phase on A/B site modifications. J Alloys Compd 765:278–286

    Article  CAS  Google Scholar 

  28. Yadav AK, Rajput P, Alshammari O, Khan M, Anita G, Kumar S, Kumar PM, Shirage S, Biring SS (2017) Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1xFex)O3. J Alloys Compd 701:619–625

    Article  CAS  Google Scholar 

  29. Wei Q, Zhu M, Zheng M, Hou Y, Li J, Bai Y (2019) Large electrocaloric effect near room temperature in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor observed by differential scanning calorimetry. Scr Mater 171:10–15

    Article  CAS  Google Scholar 

  30. Butnoi P, Manotham S, Jaita P, Randorn C, Rujijanagul G (2018) High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr. J Eur Ceram Soc 38:3822–3832

    Article  CAS  Google Scholar 

  31. Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H-J, Bell AJ, Rödel J (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J Appl Phys 110:074106. https://doi.org/10.1063/1.3645054

    Article  CAS  Google Scholar 

  32. Pan Z, Hu D, Zhang Y, Liu J, Shen B, Zhai J (2019) Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J Mater Chem C 7:4072–4078

    Article  CAS  Google Scholar 

  33. Wang C, Li Q, Zhang W, Yan B, Yadav AK, Peng H, Fan H (2020) [Bi0.5(Na0.4xLixK0.1)]0.96Sr0.04Ti0.975Ta0.025O3 lead-free RELAXOR ceramics with the enhanced recoverable energy density. Ceram Int 46:715–721

    Article  CAS  Google Scholar 

  34. Qiao X, Wu D, Zhang F, Chen B, Ren X, Liang P, Du H, Chao X, Yang Z (2019) Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field. J Mater Chem C 7:10514–10520

    Article  CAS  Google Scholar 

  35. Huang Y, Li F, Hao H, Xia F, Liu H, Zhang S (2019) (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics 5:385–393

    Article  Google Scholar 

  36. Dou R, Yang L, Xu J, Zhang X, Xie H, Yuan C, Zhou C, Chen G, Wang H (2019) modification of (Nd0.5Ta0.5)4+ complex-ions on structure and electrical properties of Bi0.5Na0.5TiO3–BaTiO3 ceramics. Mater Res. https://doi.org/10.1590/1980-5373-mr-2018-0720

    Article  Google Scholar 

  37. Wang C, Xu Z, Cheng R, Chu R, Hao J, Li W, Li H, Du J, Li G (2016) Electric field-induced giant strain and piezoelectricity enhancement effect in (Bi1/2Na1/2)0.935+xBa0.065Ti1x(Pr1/2Nb1/2)xO3 lead-free ceramics. Ceram Int 42:4354–4360

    Article  CAS  Google Scholar 

  38. Chauhan A, Patel S, Vaish R, Bowen CR (2015) Anti-ferroelectric ceramics for high energy density capacitors. Materials 8:8009–8031

    Article  Google Scholar 

  39. Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, He Y (2019) Recent advances in lead-free dielectric materials for energy storage. Mater Res Bull 113:190–201

    Article  CAS  Google Scholar 

  40. Zheng D, Zuo R, Zhang D, Li Y (2015) Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J Am Ceram Soc 98:2692–2695

    Article  CAS  Google Scholar 

  41. Xu Q, Liu H, Song Z, Huang X, Ullah A, Zhang L, Xie J, Hao H, Cao M, Yao Z (2016) A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution. J Mater Sci Mater Electron 27:322–329

    Article  CAS  Google Scholar 

  42. Xu Q, Liu H, Zhang L, Xie J, Hao H, Cao M, Yao Z, Lanagan MT (2016) Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications. RSC Adv 6:59280–59291

    Article  CAS  Google Scholar 

  43. Verma A, Yadav AK, Kumar S, Srihari V, Jangir R, Poswal HK, Biring S, Sen S (2019) Structural, thermally stable dielectric, and energy storage properties of lead-free (1−x)(Na0.50Bi0.50)TiO3−xKSbO3 ceramics. J Mater Sci Mater Electron 30:15005–15017

    Article  CAS  Google Scholar 

  44. Yadav AK, Fan H, Yan B, Wang C, Zhang M, Ma J, Wang W, Dong W, Wang S (2020) High energy storage density and stable fatigue resistance of Na0.46Bi0.46Ba0.05La0.02Zr0.03Ti0.97–xSnxO3 ceramics. Ceram Int 46:5681–5688

    Article  CAS  Google Scholar 

  45. Verma A, Yadav AK, Kumar S, Srihari V, Jangir R, Poswal HK, Biring S, Sen S (2019) Enhanced energy storage properties in A-site substituted Na0.5Bi0.5TiO3 ceramics. J Alloys Compd 792:95–107

    Article  CAS  Google Scholar 

  46. Yu Z, Liu Y, Shen M, Qian H, Li F, Lyu Y (2017) Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram Int 43:7653–7659

    Article  CAS  Google Scholar 

  47. Liu Z, Ren P, Long C, Wang X, Wan Y, Zhao G (2017) Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J Alloys Compd 721:538–544

    Article  CAS  Google Scholar 

  48. Yan B, Fan H, Yadav AK, Wang C, Zheng X, Wang H, Wang W, Dong W, Wang S (2020) Enhanced energy-storage performance and thermally stable permittivity for K0.5Na0.5NbO3 modified [(Na0.5Bi0.5)0.84Sr0.16]0.98La0.01TiO3 lead-free perovskite ceramics. Ceram Int 46:9637–9645

    Article  CAS  Google Scholar 

  49. Wang C, Li Q, Yadav AK, Peng H, Fan H (2019) Bi0.48(Na0.84K0.16)0.48Sr0.04(Ti1xTax)O3 lead-free ceramics with enhanced electric field-induced strain. J Alloys Compd 803:1082–1089

    Article  CAS  Google Scholar 

  50. Kim S, Choi H, Han S, Park JS, Lee MH, Song TK, Kim M-H, Do D, Kim W-J (2017) A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1−x)(Bi0.5Na0.5)TiO3–xSrTiO3 piezoelectrics. J Eur Ceram Soc 37:1379–1386

    Article  CAS  Google Scholar 

  51. Zhu Y, Zhang Y, Xie B, Fan P, Marwat MA, Ma W, Wang C, Yang B, Xiao J, Zhang H (2018) Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3–0.24SrTiO3 lead-free piezoceramics. Ceram Int 44:7851–7857

    Article  CAS  Google Scholar 

  52. Guo Y, Liu Y, Withers RL, Brink F, Chen H (2011) Large electric field-induced strain and antiferroelectric behavior in (1−x)(Na0.5Bi0.5)TiO3–xBaTiO3 ceramics. Chem Mater 23:219–228

    Article  CAS  Google Scholar 

  53. Zhang S-T, Kounga AB, Aulbach E, Ehrenberg H, Rödel J (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906. https://doi.org/10.1063/1.2783200

    Article  CAS  Google Scholar 

  54. Zhao Z-H, Ge R-F, Dai Y (2019) Large electro-strain signal of the BNT–BT–KNN lead-free piezoelectric ceramics with CuO doping. J Adv Dielectr 09:1950022. https://doi.org/10.1142/S2010135X1950022X

    Article  CAS  Google Scholar 

  55. Pu Y, Yao M, Liu H, Frömling T (2016) Phase transition behavior, dielectric and ferroelectric properties of (1−x)(Bi0.5Na0.5)TiO3–xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J Eur Ceram Soc 36:2461–2468

    Article  CAS  Google Scholar 

  56. Bai W, Chen D, Zheng P, Zhang J, Wen F, Shen B, Zhai J, Ji Z (2017) Phase transition, switching characteristics of MPB compositions and large strain in lead-free (Bi0.5Na0.5)TiO3-based piezoceramics. J Alloys Compd 709:646–657

    Article  CAS  Google Scholar 

  57. Ullah M, Ullah Khan H, Ullah A, Ullah A, Kim IIIW, Qazi I, Ahmad I (2018) Dielectric, ferroelectric and piezoelectric properties of (1−x)(Bi0.5Na0.5)0.935Ba0.065Ti–x(LiSbO3) solid solutions. Ceram Int 44:556–562

    Article  CAS  Google Scholar 

  58. Dragan D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267

    Article  Google Scholar 

  59. Mohanty S, Choudhary RNP, Padhee R, Parida BN (2014) Dielectric and impedance spectroscopy of BiFeO3–NaTaO3 multiferroics. Ceram Int 40:9017–9025

    Article  CAS  Google Scholar 

  60. Kumar S, Yadav AK, Sen S (2017) Sol–gel synthesis and characterization of a new four-layer K0.5Gd0.5Bi4Ti4O15 Aurivillius phase. J Mater Sci Mater Electron 28:12332–12341

    Article  CAS  Google Scholar 

  61. Qiao X-S, Chen X-M, Lian H-L, Chen W-T, Zhou J-P, Liu P (2016) Microstructure and electrical properties of nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 lead-free ceramics. J Am Ceram Soc 99:198–205

    Article  CAS  Google Scholar 

  62. Saiful Islam M (2000) Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J Mater Chem 10:1027–1038

    Article  Google Scholar 

  63. Rahman JU, Nam WH, Van Du N, Rahman G, Rahman AU, Shin WH, Seo W-S, Kim MH, Lee S (2019) Oxygen vacancy revived phonon-glass electron-crystal in SrTiO3. J Eur Ceram Soc 39:358–365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Nature Science Foundation (51672220), the National Defense Science Foundation (32102060303), the Fundamental Research Funds for the Central Universities of NPU (3102019GHXM002), the SKLSP Project (2019-TZ-04), and the Open-end Fund of International Joint Research Laboratory of Henan Province for Underground Space Development and Disaster Prevention, Henan Polytechnic University, China. We would also like to thank the Analytical and Testing Center of Northwestern Polytechnical University for SEM, TEM, AFM, Raman, and XRD test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Fan, H., Yan, B. et al. High strain and high energy density of lead-free (Bi0.50Na0.40K0.10)0.94Ba0.06Ti(1−x)(Al0.50Ta0.50)xO3 perovskite ceramics. J Mater Sci 55, 11137–11150 (2020). https://doi.org/10.1007/s10853-020-04877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04877-z

Navigation