Skip to main content
Log in

Synergistic catalysis of ZIF-67@CNTOH in thermal decomposition of ammonium perchlorate

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A composite material of ZIF-67 and hydroxylated carbon nanotube (CNTOH) was prepared by a simple method and applied to catalytic decomposition of ammonium perchlorate (AP). The AP-based composites with ZIF@CNTOH added were tested by thermal analysis methods including differential scanning calorimetry (DSC) and thermogravimetric (TG). The results showed that the low temperature decomposition peak of the samples was weakened and even disappeared after the addition of the catalyst, and the high temperature decomposition peak was significantly advanced. When the content of CNTOH in ZIF@CNTOH is 5% and ZIF@CNTOH accounts for 5% in AP composite, the pyrolysis peak temperature was reduced from the original 409.7 °C to 298.8 °C, proved the significantly catalytic effect. This is mainly due to the effective uniform loading of transition metal ions on ZIF and the excellent electrical and thermal conductivity of CNTOH. The combination of them makes it achieve the best synergistic catalytic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Archana K, Pillai NG, Rhee KY, Asif A (2019) Super paramagnetic ZIF-67 metal organic framework nanocomposite. Compos Part B Eng 158:384–389

    Article  CAS  Google Scholar 

  2. Guo C, Zhang Y, Zhang L, Zhang Y, Wang J (2018) 2-Methylimidazole-assisted synthesis of a two-dimensional MOF-5 catalyst with enhanced catalytic activity for the Knoevenagel condensation reaction. CrystEngComm 20(36):5327–5331

    Article  CAS  Google Scholar 

  3. Lee DY, Yoon SJ, Shrestha NK, Lee S-H, Ahn H, Han S-H (2012) Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous Mesoporous Mater 153:163–165

    Article  CAS  Google Scholar 

  4. Patel P, Parmar B, Kureshy RI, Khan NH, Suresh E (2018) Amine-functionalized Zn(ii) MOF as an efficient multifunctional catalyst for CO2 utilization and sulfoxidation reaction. Dalton Trans 47(24):8041–8051

    Article  CAS  Google Scholar 

  5. Restrepo J, Serroukh Z, Santiago-Morales J, Aguado S, Gómez-Sal P, Mosquera MEG, Rosal R (2017) An antibacterial Zn–MOF with hydrazinebenzoate linkers. Eur J Inorg Chem 3:574–580

    Article  CAS  Google Scholar 

  6. Wu Z-F, Huang X-Y (2018) A mechanoresponsive fluorescent Mg–Zn bimetallic MOF with luminescent sensing properties. ChemistrySelect 3(17):4884–4888

    Article  CAS  Google Scholar 

  7. Zhang M, Dai Q, Zheng H, Chen M, Dai L (2018) Novel MOF-derived Co@N–C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv Mater 30(10):1705431

    Article  CAS  Google Scholar 

  8. Zhou N, Su F, Guo C, He L, Jia Z, Wang M, Jia Q, Zhang Z, Lu S (2019) Two-dimensional oriented growth of Zn–MOF-on-Zr–MOF architecture: a highly sensitive and selective platform for detecting cancer markers. Biosens Bioelectron 123:51–58

    Article  CAS  Google Scholar 

  9. Si Y, Li Y, Zou J, Xiong X, Zeng X, Zhou J (2017) Photocatalytic performance of a novel MOF/BiFeO(3) composite. Mater (Basel) 10(10):1161

    Article  CAS  Google Scholar 

  10. Phan NTS, Le KKA, Phan TD (2010) MOF-5 as an efficient heterogeneous catalyst for Friedel–Crafts alkylation reactions. Appl Catal A Gen 382(2):246–253

    Article  CAS  Google Scholar 

  11. Nika DL, Ghosh S, Pokatilov EP, Balandin AA (2009) Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett 94(20):203103

    Article  CAS  Google Scholar 

  12. Yu L, Park JS, Lim YS, Lee CS, Shin K, Moon HJ, Yang CM, Lee YS, Han JH (2013) Carbon hybrid fillers composed of carbon nanotubes directly grown on graphene nanoplatelets for effective thermal conductivity in epoxy composites. Nanotechnology 24(15):155604

    Article  CAS  Google Scholar 

  13. Lin C, He G, Liu J, Pan L, Liu S (2015) Construction and thermal properties of nano-structured polymer bonded explosives with graphene. RSC Adv 5(119):98514–98521

    Article  CAS  Google Scholar 

  14. Im H, Kim J (2012) Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50(15):5429–5440

    Article  CAS  Google Scholar 

  15. Xiao Y-J, Wang W-Y, Chen X-J, Lin T, Zhang Y-T, Yang J-H, Wang Y, Zhou Z-W (2016) Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos Part A Appl Sci Manuf 90:614–625

    Article  CAS  Google Scholar 

  16. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744

    Article  CAS  Google Scholar 

  17. Safdar Hossain S, Rahman SU, Ahmed S (2014) Electrochemical reduction of carbon dioxide over CNT-supported nanoscale copper electrocatalysts. J Nanomater 2014:1–10

    Article  CAS  Google Scholar 

  18. Sabourin JL, Dabbs DM, Yetter RA et al (2009) Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. ACS Nano 3(12):3945–3954

    Article  CAS  Google Scholar 

  19. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1):24–36

    Article  CAS  Google Scholar 

  20. Rao R, Dong H, Dong X, Tang Y, Ni S, Wu K, Hu C (2019) Defect-mediated hydroxylation of multi-walled carbon nanotubes as metal-free catalysts to enhance catalytic performance for oxidative dehydrogenation of ethylbenzene using CO2. J CO2 Util 31:8–15

    Article  CAS  Google Scholar 

  21. Jabbari V, Veleta JM, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D (2016) Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783

    Article  CAS  Google Scholar 

  22. Petit C, Bandosz TJ (2011) Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))–graphite oxide composites: exploring the limits of materials fabrication. Adv Funct Mater 21(11):2108–2117

    Article  CAS  Google Scholar 

  23. Petit C, Bandosz TJ (2012) Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents. Dalton Trans 41(14):4027–4035

    Article  CAS  Google Scholar 

  24. Petit C, Burress J, Bandosz TJ (2011) The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon 49(2):563–572

    Article  CAS  Google Scholar 

  25. Petit C, Mendoza B, Bandosz TJ (2010) Reactive adsorption of ammonia on Cu-based MOF/graphene composites. Langmuir 26(19):15302–15309

    Article  CAS  Google Scholar 

  26. Yang SJ, Cho JH, Nahm KS, Park CR (2010) Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. Int J Hydrog Energy 35(23):13062–13067

    Article  CAS  Google Scholar 

  27. Andrew Lin K-Y, Lee W-D (2016) Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem Eng J 284:1017–1027

    Article  CAS  Google Scholar 

  28. Kumar R, Jayaramulu K, Maji TK, Rao CN (2013) Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chem Commun (Camb) 49(43):4947–4949

    Article  CAS  Google Scholar 

  29. Lu H, Zhang C, Zhang Y, Huang Y, Liu M, Liu T (2018) Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: advanced sulfur hosts for lithium-sulfur batteries. Nano Res 11(12):6155–6166

    Article  CAS  Google Scholar 

  30. Li N, Cao M, Wu Q, Hu C (2012) A facile one-step method to produce Ni/graphene nanocomposites and their application to the thermal decomposition of ammonium perchlorate. CrystEngComm 14(2):428–434

    Article  CAS  Google Scholar 

  31. Fertassi MA, Alali KT, Liu Q, Li R, Liu P, Liu J, Liu L, Wang J (2016) Catalytic effect of CuO nanoplates, a graphene (G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate. RSC Adv 6(78):74155–74161

    Article  CAS  Google Scholar 

  32. Singh G, Kapoor IPS, Dubey S (2009) Bimetallic nanoalloys: preparation, characterization and their catalytic activity. J Alloys Compd 480(2):270–274

    Article  CAS  Google Scholar 

  33. Vargeese AA (2016) A kinetic investigation on the mechanism and activity of copper oxide nanorods on the thermal decomposition of propellants. Combust Flame 165:354–360

    Article  CAS  Google Scholar 

  34. Wang X, Li J, Luo Y, Huang M (2014) A novel ammonium perchlorate/graphene aerogel nanostructured energetic composite: preparation and thermal decomposition. Sci Adv Mater 6(3):530–537

    Article  CAS  Google Scholar 

  35. Zhang Y, Meng C (2016) Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate. J Alloys Compd 674:259–265

    Article  CAS  Google Scholar 

  36. Vargeese AA, Muralidharan K (2012) Kinetics and mechanism of hydrothermally prepared copper oxide nanorod catalyzed decomposition of ammonium nitrate. Appl Catal A Gen 447:171–177

    Article  CAS  Google Scholar 

  37. Chen LJ, Li LP, Li GS (2008) Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloys Compd 464(1–2):532–536

    Article  CAS  Google Scholar 

  38. Wang JF, Li Y, Wang HH, Tian TA, Zhu SX, Zhou J, Wu XH, Qin W (2017) Atomic layer deposited ZnO on carbon black as high-performance catalysts for the thermal decomposition of ammonium perchlorate. Eur J Inorg Chem 25:3154–3160

    Article  CAS  Google Scholar 

  39. Yang JM (2017) MOF-derived hollow NiO–ZnO composite micropolyhedra and their application in catalytic thermal decomposition of ammonium perchlorate. Russ J Phys Chem A 91(7):1214–1220

    Article  CAS  Google Scholar 

  40. Ebrahimi S, Shakeri A, Alizadeh T (2019) Thermal decomposition of ammonium perchlorate in the presence of cobalt hydroxyl@nano-porous polyaniline. J Inorg Organomet Polym Mater 29(5):1716–1727

    Article  CAS  Google Scholar 

  41. Wang JX, Zhang WC, Zheng ZL, Gao Y, Ma KF, Ye JH, Yang Y (2017) Enhanced thermal decomposition properties of ammonium perchlorate through addition of 3DOM core-shell Fe2O3/Co3O4 composite. J Alloys Compd 724:720–727

    Article  CAS  Google Scholar 

  42. Isert S, Xin L, Xie J, Son SF (2017) The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants. Combust Flame 183:322–329

    Article  CAS  Google Scholar 

  43. Wang W, Zhang D (2019) A kinetic investigation on the thermal decomposition of propellants catalyzed by rGO/MFe2O4 (M = Cu Co, Ni, Zn) nanohybrids. J Saudi Chem Soc 23(5):627–635

    Article  CAS  Google Scholar 

  44. Yang YJ, Bai Y, Zhao FQ, Yao EG, Yi JH, Xuan CL, Chen SP (2016) Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate. RSC Adv 6(71):67308–67314

    Article  CAS  Google Scholar 

  45. Zhao WY, Zhang TL, Song NM, Zhang LN, Chen ZK, Yang L, Zhou ZN (2016) Assembly of composites into a core–shell structure using ultrasonic spray drying and catalytic application in the thermal decomposition of ammonium perchlorate. RSC Adv 6(75):71223–71231

    Article  CAS  Google Scholar 

  46. Sharma JK, Srivastava P, Singh G, Akhtar MS, Ameen S (2015) Biosynthesized NiO nanoparticles: potential catalyst for ammonium perchlorate and composite solid propellants. Ceram Int 41(1):1573–1578

    Article  CAS  Google Scholar 

  47. Zhao K, Li HT, Tian SQ (2019) A facile low-temperature synthesis of hierarchical porous Co3O4 micro/nano structures derived from ZIF-67 assisted by ammonium perchlorate. Inorg Chem Front 6(3):715–722

    Article  CAS  Google Scholar 

  48. Zhao HF, Lv J, Xu HY, Zhao XY, Jia X, Tan LH (2019) In-situ synthesis of MXene/ZnCo2O4 nanocomposite with enhanced catalytic activity on thermal decomposition of ammonium perchlorate. J Solid State Chem 279:120947

    Article  CAS  Google Scholar 

  49. Tan LH, Lv J, Xu X, Zhao HF, He CM, Wang H, Zheng WF (2019) Construction of MXene/NiO composites through in situ precipitation strategy for dispersibility improvement of NiO nanoparticles. Ceram Int 45(5):6597–6600

    Article  CAS  Google Scholar 

  50. Wang S, Ye B, An C, Wang J, Li Q (2018) Synergistic effects between Cu metal–organic framework (Cu-MOF) and carbon nanomaterials for the catalyzation of the thermal decomposition of ammonium perchlorate (AP). J Mater Sci 54(6):4928–4941

    Article  CAS  Google Scholar 

  51. Beyer S, Prinz C, Schürmann R, Feldmann I, Zimathies A, Blocki AM, Bald I, Schneider RJ, Emmerling F (2016) Ultra-sonication of ZIF-67 crystals results in ZIF-67 nano-flakes. ChemistrySelect 1(18):5905–5908

    Article  CAS  Google Scholar 

  52. Feng X, Carreon MA (2015) Kinetics of transformation on ZIF-67 crystals. J Cryst Growth 418:158–162

    Article  CAS  Google Scholar 

  53. Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M (2018) Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J Am Chem Soc 140(5):1812–1823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Advantage Disciplines Climbing Plan of Shanxi Province. And we are grateful for the support and assistance of Xi’an Modern Chemistry Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

BY and SW conceived and designed the experiments; WS performed the experiments and analyzed the data; CA, JW and XS contributed the reagents/materials/analysis tools; SW wrote the paper; BY and XS improved this paper.

Corresponding authors

Correspondence to Baoyun Ye or Chongwei An.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ye, B., An, C. et al. Synergistic catalysis of ZIF-67@CNTOH in thermal decomposition of ammonium perchlorate. J Mater Sci 55, 4646–4655 (2020). https://doi.org/10.1007/s10853-019-04321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04321-x

Navigation