Skip to main content
Log in

Stretchable, self-healable, and reprocessable chemical cross-linked ionogels electrolytes based on gelatin for flexible supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel chemical cross-linked ionogels with excellent self-healability, stretchability, and reprocessability based on gelatin have been synthesized via the Schiff base reaction in ionic liquid of 1-ethyl-3-methylimidazolium acetate (EMIMAc). Rheological measurements revealed that the plateaus modulus in storage modulus increases with increase in the content of gelatin. These ionogels displayed good thermal mechanical stability, and the chemical networks were not destroyed even at temperature up to 140 °C. High stretchability was obtained and the elongation at break for the as-prepared ionogel could even reach 368.6%. Importantly, the prepared ionogels showed excellent self-healability and reprocessability. Remarkably, the ionogels exhibited superior ionic conductivity and room temperature ionic conductivity was higher than 1.0 × 10−3 S/cm. Furthermore, supercapacitors with this ionogel electrolyte showed temperature-dependent specific capacitance and remarkable flexible performance. Therefore, the as-prepared self-healable and reprocessable ionogels from the nature of gelatin, with highly ionic conductivity and stretchability, could be considered an excellent electrolyte candidate for various next-generation stretchable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Son D, Kang J, Vardoulis O et al (2018) An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol 13(11):1057–1066

    CAS  Google Scholar 

  2. Hong YJ, Jeong H, Cho KW et al (2019) Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater 29(19):1808247

    Google Scholar 

  3. Rim YS, Bae SH, Chen H et al (2016) Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 28(22):4415–4440

    CAS  Google Scholar 

  4. Wu H, Huang Y, Xu F et al (2016) Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 28(45):9881–9919

    CAS  Google Scholar 

  5. Zhao G, Zhang Y, Shi N et al (2019) Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 59:302–310

    CAS  Google Scholar 

  6. Matsuhisa N, Chen XD, Bao ZA et al (2019) Materials and structural designs of stretchable conductors. Chem Soc Rev 48(11):2946–2966

    CAS  Google Scholar 

  7. Tran QT, Lee NE (2017) Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater 29(3):1603167

    Google Scholar 

  8. Benight SJ, Wang C, Tok JBH et al (2013) Stretchable and self-healing polymers and devices for electronic skin. Prog Polym Sci 38(12):1961–1977

    CAS  Google Scholar 

  9. Zhang Q, Liu LB, Pan CG et al (2018) Review of recent achievements in self-healing conductive materials and their applications. J Mater Sci 53(1):27–46. https://doi.org/10.1007/s10853-017-1388-8

    Article  CAS  Google Scholar 

  10. Li CH, Wang C, Keplinger C et al (2016) A highly stretchable autonomous self-healing elastomer. Nat Chem 8(6):619–625

    Google Scholar 

  11. Deng G, Li F, Yu H et al (2012) Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett 1(2):275–279

    CAS  Google Scholar 

  12. Dong R, Zhao X, Guo B et al (2016) Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl Mater Interfaces 8(27):17138–17150

    CAS  Google Scholar 

  13. Hernandez M, Grande AM, Dierkes W et al (2016) Turning vulcanized natural rubber into a self-healing polymer: effect of the disulfide/polysulfide ratio. ACS Sustain Chem Eng 4(10):5776–5784

    CAS  Google Scholar 

  14. Wang S, Liu N, Su J et al (2017) Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11(2):2066–2074

    CAS  Google Scholar 

  15. Huang Y, Zhong M, Huang Y et al (2015) A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun 6:10310

    CAS  Google Scholar 

  16. Sun J, Pu X, Liu M et al (2018) Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 12(6):6147–6155

    CAS  Google Scholar 

  17. Kim KS, Choi SB, Kim DU et al (2018) Photo-induced healing of stretchable transparent electrodes based on thermoplastic polyurethane with embedded metallic nanowires. J Mater Chem A 6(26):12420–12429

    CAS  Google Scholar 

  18. Cheng T, Zhang Y, Lai WY et al (2015) Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater 27(22):3349–3376

    CAS  Google Scholar 

  19. Zhao S, Li J, Cao D et al (2017) Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl Mater Interfaces 9(14):12147–12164

    CAS  Google Scholar 

  20. Li J, Geng L, Wang G et al (2017) Self-healable gels for use in wearable devices. Chem Mater 29(21):8932–8952

    CAS  Google Scholar 

  21. Cheng X, Pan J, Zhao Y et al (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(7):1702184

    Google Scholar 

  22. Rong YG, Ku ZL, Li X et al (2015) Transparent bifacial dye-sensitized solar cells based on an electrochemically polymerized organic counter electrode and an iodine-free polymer gel electrolyte. J Mater Sci 50(10):3803–3811. https://doi.org/10.1007/s10853-015-8945-9

    Article  CAS  Google Scholar 

  23. Bhat MY, Yadav N, Hashmi SA (2019) Pinecone-derived porous activated carbon for high performance all-solid-state electrical double layer capacitors fabricated with flexible gel polymer electrolytes. Electrochim Acta 304:94–108

    CAS  Google Scholar 

  24. Li H, Feng Z, Zhao K et al (2019) Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus. Nanoscale 11(8):3689–3700

    CAS  Google Scholar 

  25. Lahiri A, Pulletikurthi G, Ghazvini MS et al (2018) Ionic liquid-organic solvent mixture-based polymer gel electrolyte with high lithium concentration for Li-ion batteries. J Phys Chem C 122(43):24788–24800

    CAS  Google Scholar 

  26. Basumallick I, Roy P, Chatterjee A et al (2006) Organic polymer gel electrolyte for Li-ion batteries. J Power Sour 162(2):797–799

    CAS  Google Scholar 

  27. Choudhury NA, Sampath S, Shukla AK (2009) Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci 2(1):55–67

    CAS  Google Scholar 

  28. Ma LT, Chen SM, Wang DH et al (2019) Super-stretchable zinc air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv Energy Mater 9(12):1803046

    Google Scholar 

  29. Wada H, Yoshikawa K, Nohara S et al (2006) Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte. J Power Sour 159(2):1464–1467

    CAS  Google Scholar 

  30. Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40(2):907–925

    Google Scholar 

  31. Tamate R, Hashimoto K, Horii T et al (2018) Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater 30(36):1802792

    Google Scholar 

  32. Song H, Zhao N, Qin W et al (2015) High-performance ionic liquid-based nanocomposite polymer electrolytes with anisotropic ionic conductivity prepared by coupling liquid crystal self-templating with unidirectional freezing. J Mater Chem A 3(5):2128–2134

    CAS  Google Scholar 

  33. Lodge TP, Ueki T (2016) Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc Chem Res 49(10):2107–2114

    CAS  Google Scholar 

  34. Chen S, Zhang N, Zhang B et al (2018) Multifunctional self-healing ionogels from supramolecular assembly: smart conductive and remarkable lubricating materials. ACS Appl Mater Interfaces 10(51):44706–44715

    CAS  Google Scholar 

  35. Osada I, de Vries H, Scrosati B et al (2016) Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem-Int Edit 55(2):500–513

    CAS  Google Scholar 

  36. Chen N, Xing Y, Wang L et al (2018) “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy 47:35–42

    Google Scholar 

  37. Zhang LM, He Y, Cheng S et al (2019) Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small 15(21):1804651

    Google Scholar 

  38. Li Z, Wang J, Hu R et al (2019) A highly ionic conductive, healable, and adhesive polysiloxane-supported ionogel. Macromol Rapid Commun 40(7):1800776

    Google Scholar 

  39. Zhao X, Guo S, Li H et al (2017) In situ synthesis of imidazolium-crosslinked ionogels via Debus–Radziszewski reaction based on PAMAM dendrimers in imidazolium ionic liquid. Macromol Rapid Commun. 38(21):1700415

    Google Scholar 

  40. Visentin AF, Panzer MJ (2012) Poly(ethylene glycol) diacrylate-supported ionogels with consistent capacitive behavior and tunable elastic response. ACS Appl Mater Interfaces 4(6):2836–2839

    CAS  Google Scholar 

  41. Thiemann S, Sachnov SJ, Pettersson F et al (2014) Cellulose-based ionogels for paper electronics. Adv Funct Mater 24(5):625–634

    CAS  Google Scholar 

  42. Smith CJ, Wagle DV, O’Neill HM et al (2017) Bacterial cellulose ionogels as chemosensory supports. ACS Appl Mater Interfaces 9(43):38042–38051

    CAS  Google Scholar 

  43. Isik M, Gracia R, Kollnus LC et al (2013) Cholinium-based poly(ionic liquid)s: synthesis, characterization, and application as biocompatible ion gels and cellulose coatings. ACS Macro Lett 2(11):975–979

    CAS  Google Scholar 

  44. Guo S, Zhao K, Feng Z et al (2018) High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl Surf Sci 455:599–607

    CAS  Google Scholar 

  45. Zhang B, SudreG Quintard G (2017) Guar gum as biosourced building block to generate highly conductive and elastic ionogels with poly(ionic liquid) and ionic liquid. Carbohyd Polym 157:586–595

    CAS  Google Scholar 

  46. Trivedi TJ, Bhattacharjya D, Yu JS et al (2015) Functionalized agarose self-healing ionogels suitable for supercapacitors. Chemsuschem 8(19):3294–3303

    CAS  Google Scholar 

  47. Singh G, Singh G, Darnarla K et al (2017) Gelatin-based highly stretchable, self-healing, conducting, multiadhesive, and antimicrobial ionogels embedded with Ag2O nanoparticles. ACS Sustain Chem Eng 5(8):6568–6577

    CAS  Google Scholar 

  48. Pandey PK, Rawat K, Aswal VK et al (2017) DNA ionogel: Structure and self-assembly. Phys Chem Chem Phys 19(1):804–812

    CAS  Google Scholar 

  49. Guyomard-Lack A, Buchtova N, Humbert B et al (2015) Ion segregation in an ionic liquid confined within chitosan based chemical ionogels. Phys Chem Chem Phys 17(37):23947–23951

    CAS  Google Scholar 

  50. Sharma M, Mondal D, Mukesh C et al (2013) Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Carbohyd Polym 98(1):1025–1030

    CAS  Google Scholar 

  51. Trivedi TJ, Srivastava DN, Rogers RD et al (2012) Agarose processing in protic and mixed protic–aprotic ionic liquids: dissolution, regeneration and high conductivity, high strength ionogels. Green Chem 14(10):2831–2839

    CAS  Google Scholar 

  52. Sharma A, Rawat K, Solanki PR et al (2017) Self-healing gelatin ionogels. Int J Biol Macromol 95:603–607

    CAS  Google Scholar 

  53. Zhao XM, Guo SF, Li H et al (2017) One-pot synthesis of self-healable and recyclable ionogels based on polyamidoamine (PAMAM) dendrimers via Schiff base reaction. RSC Adv 7(61):38765–38772

    CAS  Google Scholar 

  54. Prasad K, Mondal D, Sharma M et al (2018) Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohyd Polym 180:328–336

    CAS  Google Scholar 

  55. Raza-Karimi A, Khodadadi A (2016) Mechanically robust 3D nanostructure Chitosan-based hydrogels with autonomic self-healing properties. ACS Appl Mater Interfaces 8(40):27254–27263

    Google Scholar 

  56. He Q, Huang Y, Wang S (2018) Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv Funct Mater 28(5):1705069

    Google Scholar 

  57. Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41(2):909–930

    CAS  Google Scholar 

  58. Jiang F, Wang Z, Qao Y et al (2013) A novel architecture toward third-generation thermoplastic elastomers by a grafting strategy. Macromolecules 46(12):4772–4780

    CAS  Google Scholar 

  59. Liu X, Wen Z, Wu D et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2(30):11569–11573

    CAS  Google Scholar 

  60. Kang YJ, Chun SJ et al (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6(7):6400–6406

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the National Science Foundation of China (Grant Nos. 21304029, 21474026, 51425307), the Natural Science Foundation of Hebei Province (Grant No. B2017201019). The authors also acknowledge the financial supports by Open Research Fund of CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzan Song, Jun Zhang or Xinwu Ba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1147 kb)

Supplementary material 2 (AVI 8396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Song, H., Wang, Z. et al. Stretchable, self-healable, and reprocessable chemical cross-linked ionogels electrolytes based on gelatin for flexible supercapacitors. J Mater Sci 55, 3991–4004 (2020). https://doi.org/10.1007/s10853-019-04271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04271-4

Navigation