Skip to main content

Advertisement

Log in

LSPR-excited obvious hydrogen yield enhancement for TiO2:Er3+, Yb3+@W18O49 quasi-core/shell heterostructure

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A favorable process that utilizing upconversion (UC) luminescence to enhance the photocatalytic property for H2 evolution is designed. In this work, TiO2:Er3+, Yb3+ nanosheets (NTs) are synthesized through facile solvothermal method. With a 980-nm laser excitation, the UC luminescence bands at about 522, 546 and 625 nm separately corresponding to the energy-level transitions of 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 are detected in TiO2:Er3+, Yb3+ NTs, which coincide with the absorption band of W18O49 nano-urchins (NUs). It is worth noting that a quasi-core/shell heterostructure (QCSH) of TiO2:Er3+, Yb3+@W18O49 is designed and prepared as a photocatalyst on account of localized surface plasmon resonance action of W18O49. Photocurrent tests show TiO2:Er3+, Yb3+@W18O49 QCSHs possess outstanding charge separation ability comparing with W18O49 NUs and TiO2:Er3+, Yb3+ NTs under irradiation of 980-nm laser. Therefore, we probe photocatalytic property of H2 evolution from ammonia borane (BH3NH3). The H2 yield of TiO2:Er3+, Yb3+@W18O49 QCSHs suggests 2.5 times, 8.9 times and 26.6 times improved than that of W18O49 NUs, TiO2:Er3+, Yb3+ NTs and BH3NH3 separately. Furthermore, the focused natural sunlight is employed as excitation source, TiO2:Er3+, Yb3+@W18O49 QCSHs exhibits 1.7 times, 2.7 times and 157 times higher H2 production than that of W18O49 NUs, TiO2:Er3+, Yb3+ NTs and BH3NH3, which offers a novel method for photocatalytic H2 production and solving energy issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pickering JW, Bhethanabotla VR, Kuhn JN (2017) Assessment of mechanisms for enhanced performance of TiO2/YAG:Yb + 3, Er + 3 composite photocatalysts for organic degradation. Appl Catal B Environ 202:147–155

    Article  CAS  Google Scholar 

  2. Meng X, Liu L, Ouyang S, Xu H, Wang D, Zhao N, Ye J (2016) Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv Mater 28:6781–6803

    Article  CAS  Google Scholar 

  3. Tong Z, Yang D, Li Z, Nan Y, Ding F, Shen Y, Jiang Z (2017) Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11:1103–1112

    Article  CAS  Google Scholar 

  4. Shang J, Xu X, Liu K, Bao Y, Yang Y, He M (2019) LSPR-driven upconversion enhancement and photocatalytic H2 evolution for Er–Yb:TiO2/MoO3−x nano-semiconductor heterostructure. Ceram Int 45:16625–16630

    Article  CAS  Google Scholar 

  5. Bao Y, Zhang Z, Cao B, Liu Y, Shang J, Yang Y, Dong B (2019) Energy transfer from Er to Nd ions by the thermal effect and promotion of the photocatalysis of the NaYF4:Yb, Er, Nd/W18O49 heterostructure. Nanoscale 11:7433–7439

    Article  CAS  Google Scholar 

  6. Xin Y, Wu L, Ge L, Han C, Li Y, Fang S (2015) Gold–palladium bimetallic nanoalloy decorated ultrathin 2D TiO2 nanosheets as efficient photocatalysts with high hydrogen evolution activity. J Mater Chem A 3:8659–8666

    Article  CAS  Google Scholar 

  7. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  8. Mazierski P, Lisowski W, Grzyb T, Winiarski MJ, Klimczuk T, Mikołajczyk A, Flisikowski J, Hirsch A, Kołakowska A, Puzyn T, Zaleska-Medynska A, Nadolna J (2017) Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study. Appl Catal B Environ 205:376–385

    Article  CAS  Google Scholar 

  9. Lu M, Shao C, Wang K, Lu N, Zhang X, Zhang P, Zhang M, Li X, Liu Y (2014) p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. ACS Appl Mater Interfaces 6:9004–9012

    Article  CAS  Google Scholar 

  10. Wang W, Wang D, Qu W, Lu L, Xu A (2012) Large ultrathin anatase TiO2 nanosheets with exposed 001 facets on graphene for enhanced visible light photocatalytic activity. J Phys Chem C 116:19893–19901

    Article  CAS  Google Scholar 

  11. Zhang Z, Liu K, Bao Y, Dong B (2017) Photo-assisted self-optimizing of charge-carriers transport channel in the recrystallized multi-heterojunction nanofibers for highly efficient photocatalytic H2 generation. Appl Catal B Environ 203:599–606

    Article  CAS  Google Scholar 

  12. Liu Z, Liu Y, Xu P, Ma Z, Wang J, Yuan H (2017) Rational design of wide spectral-responsive heterostructures of Au nanorod coupled Ag3PO4 with enhanced photocatalytic performance. ACS Appl Mater Interfaces 9:20620–20629

    Article  CAS  Google Scholar 

  13. Liu Y, Zhang Z, Fang Y, Liu B, Huang J, Miao F, Bao Y, Dong B (2019) IR-driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane. Appl Catal B Environ 252:164–173

    Article  CAS  Google Scholar 

  14. Dong B, Qin D, Shi HL, Fang YR, Wang WZ, He YY, Cao BS, Liu YX, Ding Y (2013) Local surface plasmon resonance of single silver nanorice particles in the near-infrared. Microchim Acta 181:791–795

    Article  Google Scholar 

  15. Shang J, Xu X, Liu K, Bao Y, Dong B (2019) Obvious effect of molybdenum supporting on morphology and upconversion luminescence of Er–Yb:TiO2 and improvement of H2 generation for W18O49. J Alloys Compd 785:610–615

    Article  CAS  Google Scholar 

  16. Zhou D, Liu D, Xu W, Yin Z, Chen X, Zhou P, Cui S, Chen Z, Song H (2016) Observation of considerable upconversion enhancement induced by Cu2−xS plasmon nanoparticles. ACS Nano 10:5169–5179

    Article  CAS  Google Scholar 

  17. Liu P, Wen M, Tan C, Navlani-García M, Kuwahara Y, Mori K, Yamashita H, Chen L (2017) Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2−xS nanowires decorated by Pd nanoparticles. Nano Energy 31:57–63

    Article  CAS  Google Scholar 

  18. Huang Q, Hu S, Zhuang J, Wang X (2012) MoO3–x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chemistry 18:15283–15287

    Article  CAS  Google Scholar 

  19. Zhang Z, Jiang X, Liu B, Guo L, Lu N, Wang L, Huang J, Liu K, Dong B (2018) IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation. Adv Mater 30:1705221

    Article  Google Scholar 

  20. Zhang Z, Huang J, Fang Y, Zhang M, Liu K, Dong B (2017) A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv Mater 29:1606688

    Article  Google Scholar 

  21. Lu N, Zhang Z, Wang Y, Liu B, Guo L, Wang L, Huang J, Liu K, Dong B (2018) Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/carbon heterostructures for enhanced catalytic H2 production. Appl Catal B Environ 233:19–25

    Article  CAS  Google Scholar 

  22. Zhang N, Jalil A, Wu D, Chen S, Liu Y, Gao C, Ye W, Qi Z, Ju H, Wang C, Wu X, Song L, Zhu J, Xiong Y (2018) Refining defect states in W18O49 by mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J Am Chem Soc 140:9434–9443

    Article  CAS  Google Scholar 

  23. Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Fe Geng, Zhao Z (2015) Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun 6:7800

    Article  CAS  Google Scholar 

  24. Zhang Z, Liu Y, Fang Y, Cao B, Huang J, Liu K, Dong B (2018) Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H2 evolution from ammonia borane. Adv Sci (Weinh) 5:1800748

    Article  Google Scholar 

  25. Tandon B, Agrawal A, Heo S, Milliron DJ (2019) Competition between depletion effects and coupling in the plasmon modulation of doped metal oxide nanocrystals. Nano Lett 19:2012–2019

    Article  CAS  Google Scholar 

  26. DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD (2014) Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew Chem Int Ed Engl 53:7887–7891

    Article  CAS  Google Scholar 

  27. Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew Chem Int Ed Engl 53:2910–2914

    Article  CAS  Google Scholar 

  28. Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134:15033–15041

    Article  CAS  Google Scholar 

  29. Dong B, Cao B, He Y, Zhuang L, Li Z, Feng Z (2012) Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv Mater 24:1987–1993

    Article  CAS  Google Scholar 

  30. Tessitore G, Mandl GA, Brik MG, Park W, Capobianco JA (2019) Recent insights into upconverting nanoparticles: spectroscopy, modeling, and routes to improved luminescence. Nanoscale 11:12015–12029

    Article  CAS  Google Scholar 

  31. Wilhelm S (2017) Perspectives for upconverting nanoparticles. ACS Nano 11:10644–10653

    Article  CAS  Google Scholar 

  32. Bao YN, Xu XS, Wu JL, Liu KC, Zhang ZY, Cao BS, Dong B (2016) Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: enhanced upconversion luminescence for temperature sensing. Ceram Int 42:12525–12530

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Special Support Program for High-level Personnel Recruitment, National Natural Science Foundation of China (Grant Nos. 11474046, 61775024), Program for Liaoning Innovation Team in University (LT2016011), Science and Reference Technique Foundation of Dalian (Grant Nos. 2017RD12, 2015J12JH201), and Fundamental Research Funds for the Central Universities (Grant No. DC201502080203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyu Shang or Bin Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Fang, G., Shang, J. et al. LSPR-excited obvious hydrogen yield enhancement for TiO2:Er3+, Yb3+@W18O49 quasi-core/shell heterostructure. J Mater Sci 55, 2958–2966 (2020). https://doi.org/10.1007/s10853-019-04168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04168-2

Navigation