Skip to main content
Log in

Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

3D flower-like g-C3N4/TiO2 composite microspheres (FCTCMs) were prepared by a simple solvothermal method and combined with a thermal treatment method. By controlling the amount of urea mixed with the 3D flower-like structure of TiO2 microspheres (FTMs), FCTCMs with different g-C3N4 loadings were prepared. Urea has two functions in the preparation process: one decomposes into gaseous substances during heat treatment at 550 °C to form g-C3N4 in the gap between nanosheets of TiO2 microspheres; and the other effectively protects the 3D flower-like structure of TiO2 microspheres (FTMs). The results of XRD, TEM, FT-IR, SEM and XPS indicate that g-C3N4 and TiO2 were connected in a surface-to-surface manner. Its photocatalytic performance was characterized by the degradation of methyl orange and methylene blue solution. The results show that the photocatalytic performance of FCTCMs under visible light was as twice as FTMs. The transient photocurrent responses and EIS results also indicate the increase in the number of photogenerated electron–hole pairs produced by FCTCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Asghar A, Raman AAA, Ashri WM, Daud W (2015) Advanced oxidation processes for in situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J Clean Prod 87:826–838

    CAS  Google Scholar 

  2. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    CAS  Google Scholar 

  3. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    CAS  Google Scholar 

  4. Gunti S, Kumar A, Ram MK (2018) Nanostructured photocatalysis in the visible spectrum for the decontamination of air and water. Int Mater Rev 63:257–282

    CAS  Google Scholar 

  5. Eskandarloo H, Zaferani M, Kierulf A, Abbaspourrad A (2018) Shape-controlled fabrication of TiO2 hollow shells toward photocatalytic application. Appl Catal B 227:519–529

    CAS  Google Scholar 

  6. Reti B, Kiss GI, Gyulavari T, Baan K, Magyari K, Hernadi K (2017) Carbon sphere templates for TiO2 hollow structures: preparation, characterization and photocatalytic activity. Catal Today 284:160–168

    CAS  Google Scholar 

  7. Wang R, Lan K, Liu B, Yu Y, Chen A, Li W (2019) Confinement synthesis of hierarchical ordered macro-/mesoporous TiO2 nanostructures with high crystallization for photodegradation. Chem Phys 516:48–54

    CAS  Google Scholar 

  8. Pingmuang K, Chen J, Kangwansupamonkon W, Wallace GG, Phanichphant S, Nattestad A (2017) Composite photocatalysts containing BiVO4 for degradation of cationic dyes. Sci Rep 7:8929–8936

    Google Scholar 

  9. Wang Y, Tan G, Ren H, Xia A, Li B, Zhang D, Wang M, Lv L (2018) Synthesis of BiVO4 with surface heterojunction for enhancing photocatalytic activity by low temperature aqueous method. Mater Lett 229:308–311

    CAS  Google Scholar 

  10. Xiong LB, Yu HQ, Nie CJ, Xiao YJ, Zeng QD, Wang GJ, Wang BY, Lv H, Li QG, Chen SS (2017) Size-controlled synthesis of Cu2O nanoparticles: size effect on antibacterial activity and application as a photocatalyst for highly efficient H2O2 evolution. RSC Adv 7:51822–51830

    CAS  Google Scholar 

  11. Dan Z, Yang Y, Qin F, Wang H, Chang H (2018) Facile fabrication of Cu2O nanobelts in ethanol on nanoporous Cu and their photodegradation of methyl orange. Materials (Basel) 11:446–460

    Google Scholar 

  12. Chen D, Ye J (2008) Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv Funct Mater 18:1922–1928

    CAS  Google Scholar 

  13. Jin B, Jung E, Ma M, Kim S, Zhang K, Kim JI, Son Y, Park JH (2018) Solution-processed yolk-shell-shaped WO3/BiVO4 heterojunction photoelectrodes for efficient solar water splitting. J Mater Chem A 6:2585–2592

    CAS  Google Scholar 

  14. Ramirez-Canon A, Medina-Llamas M, Vezzoli M, Mattia D (2018) Multiscale design of ZnO nanostructured photocatalysts. Phys Chem Chem Phys 20:6648–6656

    CAS  Google Scholar 

  15. Suryavanshi RD, Mohite SV, Bagade AA, Shaikh SK, Thorat JB, Rajpure KY (2018) Nanocrystalline immobilised ZnO photocatalyst for degradation of benzoic acid and methyl blue dye. Mater Res Bull 101:324–333

    CAS  Google Scholar 

  16. Sohn Y, Huang W, Taghipour F (2017) Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials. Appl Surf Sci 396:1696–1711

    CAS  Google Scholar 

  17. Liu HZ, Jiang W, Yin L, Shi YS, Chen BD, Jiang WT, Ding YC (2016) Enhanced photovoltaic performance of dye-sensitized solar cells with TiO2 micro/nano-structures as light scattering layer. J Mater Sci Mater Electron 27:5452–5461. https://doi.org/10.1007/s10854-016-4449-x

    Article  CAS  Google Scholar 

  18. Peng YL, Shen XJ, Wang LZ, Tian BZ, Liu YD, Chen HJ, Lei JY, Zhang JL (2017) Preparation of porous TiO2 photocatalyts with different crystal phases and high catalytic activity by simple calcination of titanate nanofibers. RSC Adv 7:45742–45745

    CAS  Google Scholar 

  19. Monfort O, Raptis D, Satrapinskyy L, Roch T, Plesch G, Lianos P (2017) Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode. Electrochim Acta 251:244–249

    CAS  Google Scholar 

  20. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B 176:396–428

    Google Scholar 

  21. Sun B, Zhou GW, Zhang Y, Liu RR, Li TD (2015) Photocatalytic properties of exposed crystal surface-controlled rutile TiO2 nanorod assembled microspheres. Chem Eng J 264:125–133

    CAS  Google Scholar 

  22. Ni J, Fu S, Yuan Y, Ma L, Jiang Y, Li L, Lu J (2018) Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv Mater 30:1704337–1704344

    Google Scholar 

  23. Zhao L, Zhong C, Wang YL, Wang SM, Dong BH, Wan L (2015) Ag nanoparticle-decorated 3D flower-like TiO2 hierarchical microstructures composed of ultrathin nanosheets and enhanced photoelectrical conversion properties in dye-sensitized solar cells. J Power Sources 292:49–57

    CAS  Google Scholar 

  24. Li H, Li T, Liu H, Huang B, Zhang Q (2016) Hierarchical flower-like nanostructures of anatase TiO2 nanosheets dominated by 001 facets. J Alloy Compd 657:1–7

    CAS  Google Scholar 

  25. Wu WB, Li X, Ruan ZH, Li YD, Xu XZ, Yuan Y, Lin KF (2018) Fabrication of a TiO2 trapped meso/macroporous g-C3N4 heterojunction photocatalyst and understanding its enhanced photocatalytic activity based on optical simulation analysis. Inorg Chem Front 5:481–489

    CAS  Google Scholar 

  26. Liu Y, Xu G, Lv H (2018) Ag modified Fe-doping TiO2 nanoparticles and nanowires with enhanced photocatalytic activities for hydrogen production and volatile organic pollutant degradation. J Mater Sci Mater Electron 29:10504–10516. https://doi.org/10.1007/s10854-018-9115-z

    Article  CAS  Google Scholar 

  27. Cho S, Ahn C, Park J, Jeon S (2018) 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption. Nanoscale 10:9747–9751

    CAS  Google Scholar 

  28. Hu Y, Chen W, Fu J, Ba M, Sun F, Zhang P, Zou J (2018) Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation. Appl Surf Sci 436:319–326

    CAS  Google Scholar 

  29. Ren B, Wang T, Qu G, Deng F, Liang D, Yang W, Liu M (2018) In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation. Environ Sci Pollut Res Int 25:19122–19133

    CAS  Google Scholar 

  30. Liu C, He Y, Wei L, Zhang Y, Zhao Y, Hong J, Chen S, Wang L, Li J (2018) Hydrothermal carbon coated TiO2 as support for Co-based catalyst in Fischer-Tropsch synthesis. ACS Catal 8:1591–1600

    CAS  Google Scholar 

  31. Wang X, Wang F, Bo C, Cheng K, Wang J, Zhang J, Song H (2018) Promotion of phenol photodecomposition and the corresponding decomposition mechanism over g-C3N4/TiO2 nanocomposites. Appl Surf Sci 453:320–329

    CAS  Google Scholar 

  32. Li WJ, Wang Z, Kong DF, Du DD, Zhou M, Du Y, Yan TJ, You JM, Kong DS (2016) Visible-light-induced dendritic BiVO4/TiO2 composite photocatalysts for advanced oxidation process. J Alloy Compd 688:703–711

    CAS  Google Scholar 

  33. Sun B, Zhou W, Li H, Ren L, Qiao P, Xiao F, Wang L, Jiang B, Fu H (2018) Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation. Appl Catal B 221:235–242

    CAS  Google Scholar 

  34. Tong Z, Yang D, Xiao T, Tian Y, Jiang Z (2015) Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem Eng J 260:117–125

    CAS  Google Scholar 

  35. Sudhaik A, Raizada P, Shandilya P, Jeong D-Y, Lim J-H, Singh P (2018) Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J Ind Eng Chem 67:28–51

    CAS  Google Scholar 

  36. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    CAS  Google Scholar 

  37. Panneri S, Ganguly P, Nair BN, Mohamed AA, Warrier KG, Hareesh UN (2017) Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ Sci Pollut Res Int 24:8609–8618

    CAS  Google Scholar 

  38. Wang Y, Yang W, Chen X, Wang J, Zhu Y (2018) Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl Catal B 220:337–347

    CAS  Google Scholar 

  39. Tang Q, Meng XF, Wang ZY, Zhou JW, Tang H (2018) One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties. Appl Surf Sci 430:253–262

    CAS  Google Scholar 

  40. Zhou C, Ye NF, Yan XH, Wang JJ, Pan JM, Wang DF, Wang Q, Zu JX, Cheng XN (2018) Construction of hybrid Z-scheme graphitic C3N4/reduced TiO2 microsphere with visible-light-driven photocatalytic activity. J Mater 4:238–246

    Google Scholar 

  41. Hu CY, E L, Zhao D, Hu KK, Cui J, Xiong QM, Liu ZF (2018) Controllable synthesis and formation mechanism of 3D flower-like TiO2 microspheres. J Mater Sci Mater Electron 29:10277–10283. https://doi.org/10.1007/s10854-018-9081-5

    Article  CAS  Google Scholar 

  42. Li W, Geng X, Xiao F, An G, Wang D (2017) Fe(II)/Fe(III) doped Bi/BiOBr hierarchical microspheres as a highly efficient catalyst for degradation of organic contaminants at neutral pH: the role of visible light and H2O2. ChemCatChem 9:3762–3771

    CAS  Google Scholar 

  43. Jo W-K, Natarajan TS (2015) Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem Eng J 281:549–565

    CAS  Google Scholar 

  44. Peng J, Zhao Y, Ul Hassan Q, Li H, Liu Y, Ma S, Mao D, Li H, Meng L, Hojamberdiev M (2018) Rapid microwave-assisted solvothermal synthesis and visible-light-induced photocatalytic activity of Er3+-doped BiOI nanosheets. Adv Powder Technol 29:1158–1166

    CAS  Google Scholar 

  45. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    CAS  Google Scholar 

  46. Tan Y, Shu Z, Zhou J, Li T, Wang W, Zhao Z (2018) One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl Catal B 230:260–268

    CAS  Google Scholar 

  47. Yang G, Jiang Z, Shi H, Xiao T, Yan Z (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309

    CAS  Google Scholar 

  48. Song X, Hu Y, Zheng MM, Wei CH (2016) Solvent-free in situ synthesis of g-C3N4/{001}TiO2 composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation. Appl Catal B 182:587–597

    CAS  Google Scholar 

  49. Lu Z, Zeng L, Song W, Qin Z, Zeng D, Xie C (2017) In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl Catal B 202:489–499

    CAS  Google Scholar 

  50. Wei H, McMaster WA, Tan JZY, Chen D, Caruso RA (2018) Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. J Mater Chem A 6:7236–7245

    CAS  Google Scholar 

  51. Hao R, Wang G, Jiang C, Tang H, Xu Q (2017) In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl Surf Sci 411:400–410

    CAS  Google Scholar 

  52. Qiu PX, Xu CM, Chen H, Jiang F, Wang X, Lu RF, Zhang XR (2017) One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity. Appl Catal B 206:319–327

    CAS  Google Scholar 

  53. Wu D, Li J, Guan J, Liu C, Zhao X, Zhu Z, Ma C, Huo P, Li C, Yan Y (2018) Improved photoelectric performance via fabricated heterojunction g-C3N4/TiO2/HNTs loaded photocatalysts for photodegradation of ciprofloxacin. J Ind Eng Chem 64:206–218

    CAS  Google Scholar 

  54. Zang M, Shi L, Liang L, Li D, Sun J (2015) Heterostructured g-C3N4/Ag-TiO2 composites with efficient photocatalytic performance under visible-light irradiation. RSC Adv 5:56136–56144

    CAS  Google Scholar 

  55. Raizada P, Singh P, Kumar A, Sharma G, Pare B, Jonnalagadda SB, Thakur P (2014) Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: Role of adsorption in dye degradation. Appl Catal A 486:159–169

    CAS  Google Scholar 

  56. Zhang Y, Deng B, Zhang T, Gao D, Xu A-W (2010) Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J Phys Chem C 114:5073–5079

    CAS  Google Scholar 

  57. Abazari R, Mahjoub AR, Shariati J, Noruzi S (2019) Photocatalytic wastewater purification under visible light irradiation using bismuth molybdate hollow microspheres with high surface area. J Clean Prod 221:582–586

    CAS  Google Scholar 

  58. Zhang B, Wang Q, Zhuang J, Guan S, Li B (2018) Molten salt assisted in situ synthesis of TiO2/g-C3N4 composites with enhanced visible-light-driven photocatalytic activity and adsorption ability. J Photoch Photobio A 362:1–13

    CAS  Google Scholar 

  59. Zhang G, Zhang T, Li B, Jiang S, Zhang X, Hai L, Chen X, Wu W (2018) An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method. Appl Surf Sci 433:963–974

    CAS  Google Scholar 

  60. Chen D, Niu F, Qin L, Wang S, Zhang N, Huang Y (2017) Defective BiFeO3 with surface oxygen vacancies: Facile synthesis and mechanism insight into photocatalytic performance. Sol Energy Mater Sol Cells 171:24–32

    CAS  Google Scholar 

Download references

Acknowledgements

The present work is supported financially by the key projects of Tianjin Natural Science Foundation (16JCZDJC39100) and the Natural Science Foundation of Tianjin Province of China (18JCYBJC87600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei E.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., E, L., Hu, K. et al. Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity. J Mater Sci 55, 151–162 (2020). https://doi.org/10.1007/s10853-019-03953-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03953-3

Navigation