Skip to main content
Log in

Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present research, zeolitic imidazolate framework-67 (ZIF-67) was synthesized through a microwave-assisted method and used as an electrode modifier for simultaneous determination of dopamine (DPM) and paracetamol (PRA). The as-prepared materials were characterized by X-ray diffractometry, scanning electron microscopy, nitrogen adsorption/desorption isotherms, and X-ray photoelectron spectroscopy. It was found that the proposed microwave-assisted approach required a short synthesis time and provided the ZIF-67 with excellent textural properties and high yield rate as compared to conventional hydrothermal processes. The as-synthesized ZIF-67 possessed excellent textural properties and manifested a superior electrocatalytic activity toward the oxidation of PRA and DPM. The electrochemical oxidation of DPM and PRA was investigated by both cyclic voltammetry and differential pulse voltammetry. The ZIF-67 modified electrode caused electrocatalytic oxidation of DPM and PRA in a linear response range from 2.0 × 10−6 to 22 × 10−6 M with the detection limits of 1.3 × 10−6 M and 1.4 × 10−6 M, respectively. A proposed method was successfully applied to analyze DMP and PRA in pharmaceutical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–793A

    Article  Google Scholar 

  2. Dutt VE, Mottola H (1974) Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period. Anal Chem 46:1777–1781

    Article  Google Scholar 

  3. Vilian AE, Rajkumar M, Chen S-M (2014) In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Coll Surf B Biointerfaces 115:295–301

    Article  Google Scholar 

  4. Criado A, Cárdenas S, Gallego M, Valcárcel M (2000) Continuous flow spectrophotometric determination of paracetamol in pharmaceuticals following continuous microwave assisted alkaline hydrolysis. Talanta 53:417–423

    Article  Google Scholar 

  5. Rodenas V, Garcıa M, Sanchez-Pedreno C, Albero M (2000) Simultaneous determination of propacetamol and paracetamol by derivative spectrophotometry. Talanta 52:517–523

    Article  Google Scholar 

  6. Locke CJ, Fox SA, Caldwell GA, Caldwell KA (2008) Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson’s disease. Neurosci Lett 439:129–133

    Article  Google Scholar 

  7. Kutluay A, Aslanoglu M (2014) An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Anal Chim Acta 839:59–66

    Article  Google Scholar 

  8. Mamiński M, Olejniczak M, Chudy M, Dybko A, Brzózka Z (2005) Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology. Anal Chim Acta 540:153–157

    Article  Google Scholar 

  9. Hanaee J (1997) Simultaneous determination of acetaminophen and codeine in pharmaceutical preparations by derivative spectrophotometry. Pharm Acta Helv 72:239–241

    Article  Google Scholar 

  10. Wilson JM, Slattery JT, Forte AJ, Nelson SD (1982) Analysis of acetaminophen metabolites in urine by high-performance liquid chromatography with UV and amperometric detection. J Chromatogr B Biomed Sci Appl 227:453–462

    Article  Google Scholar 

  11. Ravisankar S, Vasudevan M, Gandhimathi M, Suresh B (1998) Reversed-phase HPLC method for the estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations. Talanta 46:1577–1581

    Article  Google Scholar 

  12. Wang HY, Sun Y, Tang B (2002) Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 57:899–907

    Article  Google Scholar 

  13. Curtius HC, Wolfensberger M, Steinmann B, Redweik U, Siegfried J (1974) Mass fragmentography of dopamine and 6-hydroxydopamine: application to the determination of dopamine in human brain biopsies from the caudate nucleus. J Chromatogr A 99:529–540

    Article  Google Scholar 

  14. Easwaramoorthy D, Yu Y-C, Huang H-J (2001) Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal Chim Acta 439:95–100

    Article  Google Scholar 

  15. Zahao S, Xiao D, Bai W, Yuan H (2006) Capillary Electrophoresis with chemiluminescence detection of Paracetamol. Anal Chim Acta 559:195–199

    Article  Google Scholar 

  16. Xiao L, Xu H, Zhou S, Song T, Wang H, Li S, Gan W, Yuan Q (2014) Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim Acta 143:143–151

    Article  Google Scholar 

  17. Kutluay A, Aslanoglu M (2014) Nickel nanoparticles functionalized multi-walled carbon nanotubes at platinum electrodes for the detection of bromhexine. Sens Actuators B Chem 192:720–724

    Article  Google Scholar 

  18. Devaraj M, Saravanan R, Deivasigamani R, Gupta VK, Gracia F, Jayadevan S (2016) Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J Mol Liq 221:930–941

    Article  Google Scholar 

  19. Keeley GP, McEvoy N, Nolan H, Kumar S, Rezvani E, Holzinger M, Cosnier S, Duesberg GS (2012) Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. Anal Methods 4:2048–2053

    Article  Google Scholar 

  20. Yao J, Wang H (2014) Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem Soc Rev 43:4470–4493

    Article  Google Scholar 

  21. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191

    Article  Google Scholar 

  22. Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504

    Article  Google Scholar 

  23. Shekhah O, Liu J, Fischer R, Wöll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106

    Article  Google Scholar 

  24. Tran UP, Le KK, Phan NT (2011) Expanding applications of metal − organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. Acs Catal 1:120–127

    Article  Google Scholar 

  25. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943

    Article  Google Scholar 

  26. Qian J, Sun F, Qin L (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82:220–223

    Article  Google Scholar 

  27. Pan Y, Liu Y, Zeng G, Zhao L, Lai Z (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47:2071–2073

    Article  Google Scholar 

  28. Beldon PJ, Fábián L, Stein RS, Thirumurugan A, Cheetham AK, Friščić T (2010) Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem 122:9834–9837

    Article  Google Scholar 

  29. Minh TT, Phong NH, Van Duc H, Khieu DQ (2018) Microwave synthesis and voltammetric simultaneous determination of paracetamol and caffeine using an MOF-199-based electrode. J Mater Sci 53:2453–2471. https://doi.org/10.1007/s10853-017-1715-0

    Article  Google Scholar 

  30. Seo Y-K, Hundal G, Jang IT, Hwang YK, Jun C-H, Chang J-S (2009) Microwave synthesis of hybrid inorganic–organic materials including porous Cu3 (BTC) 2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater 119:331–337

    Article  Google Scholar 

  31. da Silva CTP, Safadi BN, Moisés MP, Meneguin JG, Arroyo PA, Fávaro SL, Girotto EM, Radovanovic E, Rinaldi AW (2016) Synthesis of Zn-BTC metal organic framework assisted by a home microwave oven and their unusual morphologies. Mater Lett 182:231–234

    Article  Google Scholar 

  32. Bao Q, Lou Y, Xing T, Chen J (2013) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) in aqueous solution via microwave irradiation. Inorg Chem Commun 37:170–173

    Article  Google Scholar 

  33. Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro Jr (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131:16000–16001

    Article  Google Scholar 

  34. Yang L, Lu H (2012) Microwave-assisted Ionothermal synthesis and characterization of zeolitic imidazolate framework-8. Chin J Chem 30:1040–1044

    Article  Google Scholar 

  35. Lanchas M, Arcediano S, Aguayo AT, Beobide G, Castillo O, Cepeda J, Vallejo-Sánchez D, Luque A (2014) Two appealing alternatives for MOFs synthesis: solvent-free oven heating versus microwave heating. RSC Adv 4:60409–60412

    Article  Google Scholar 

  36. H-c Guo, Shi F, Z-f Ma, X-q Liu (2010) Molecular simulation for adsorption and separation of CH4/H2 in zeolitic imidazolate frameworks. J Phys Chem C 114:12158–12165

    Article  Google Scholar 

  37. Zhang C, Xiao Y, Liu D, Yang Q, Zhong C (2013) A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO 2 capture. Chem Commun 49:600–602

    Article  Google Scholar 

  38. Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6:1887–1899

    Article  Google Scholar 

  39. Yang H, He X-W, Wang F, Kang Y, Zhang J (2012) Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J Mater Chem 22:21849–21851

    Article  Google Scholar 

  40. Hu Y, Liu Z, Xu J, Huang Y, Song Y (2013) Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy. J Am Chem Soc 135:9287–9290

    Article  Google Scholar 

  41. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X (2016) One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962–968

    Article  Google Scholar 

  42. Zhao J, Wei C, Pang H (2015) Zeolitic imidazolate framework-67 rhombic dodecahedral microcrystals with porous 110 facets as a new electrocatalyst for sensing glutathione. Part Part Syst Charact 32:429–433

    Article  Google Scholar 

  43. Chen E-X, Yang H, Zhang J (2014) Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg Chem 53:5411–5413

    Article  Google Scholar 

  44. Wu R, Qian X, Rui X, Liu H, Yadian B, Zhou K, Wei J, Yan Q, Feng XQ, Long Y (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10:1932–1938

    Article  Google Scholar 

  45. Pharmacopeia US, Revision X (1995) US Pharmacopeial convention. Inc, Rockville, MD 1161–1162

  46. Wang M, Jiang X, Liu J, Guo H, Liu C (2015) Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method. Electrochim Acta 182:613–620

    Article  Google Scholar 

  47. Li Y, Zhou K, He M, Yao J (2016) Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous Mesoporous Mater 234:287–292

    Article  Google Scholar 

  48. Rezaei B, Damiri S (2008) Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate (II) electrocatalyst system as a sensor for determination of captopril. Sens Actuators B Chem 134:324–331

    Article  Google Scholar 

  49. Pattar VP, Nandibewoor ST (2015) Electroanalytical method for the determination of 5-fluorouracil using a reduced graphene oxide/chitosan modified sensor. RSC Adv 5:34292–34301

    Article  Google Scholar 

  50. Bagoji AM, Nandibewoor ST (2016) Electrocatalytic redox behavior of graphene films towards acebutolol hydrochloride determination in real samples. New J Chem 40:3763–3772

    Article  Google Scholar 

  51. Soleymani J, Hasanzadeh M, Shadjou N, Jafari MK, Gharamaleki JV, Yadollahi M, Jouyban A (2016) A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater Sci Eng, C 61:638–650

    Article  Google Scholar 

  52. Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochem Methods 2:482

    Google Scholar 

  53. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28

    Article  Google Scholar 

  54. Li C (2007) Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element. Colloids Surf B 55:77–83

    Article  Google Scholar 

  55. Zen J-M, Ting Y-S (1997) Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode. Anal Chim Acta 342:175–180

    Article  Google Scholar 

  56. Sanghavi BJ, Srivastava AK (2010) Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta 55:8638–8648

    Article  Google Scholar 

  57. Horwitz W, Albert R (1997) Quality issuesthe concept of uncertainty as applied to chemical measurements. Analyst 122:615–617

    Article  Google Scholar 

  58. Kumar SA, Tang C-F, Chen S-M (2008) Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine. Talanta 76:997–1005

    Article  Google Scholar 

  59. Li M, Jing L (2007) Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode. Electrochim Acta 52:3250–3257

    Article  Google Scholar 

  60. Liu S-Q, Sun W-H, Hu F-T (2012) Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent. Sens Actuators B Chem 173:497–504

    Article  Google Scholar 

  61. Alipour E, Majidi MR, Saadatirad A, mahdi Golabi S, Alizadeh AM (2013) Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim Acta 91:36–42

    Article  Google Scholar 

  62. Cheemalapati S, Palanisamy S, Mani V, Chen S-M (2013) Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta 117:297–304

    Article  Google Scholar 

  63. Manjunatha R, Nagaraju DH, Suresh GS, Melo JS, D’Souza SF, Venkatesha TV (2011) Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique. Electrochim Acta 56:6619–6627

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.06-2018.15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Quang Khieu.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, N.T.T., Sy, P.C., Thien, T.V. et al. Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. J Mater Sci 54, 11654–11670 (2019). https://doi.org/10.1007/s10853-019-03709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03709-z

Navigation