Skip to main content

Advertisement

Log in

A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible strain sensors are attracting more and more attentions in wearable devices and electronic skins. Currently, the fabrication of flexible strain sensor with features of high sensitivity and wide linear working range is still a great challenge. Herein, a stretchable and wearable strain sensor is fabricated with the ZnO nanoparticles (NPs)/graphene nanoplatelets nanocomposite (ZnO/GNP NC) as both the sensing element and reinforcement phase. The ZnO/GNP NC strain sensor exhibits fascinating performance, including high mechanical properties (fracture strength of 0.6 MPa and elongation of ~ 90%), large working range of 0–44%, high sensitivity (gauge factor of 8.8–12.8), and good reproducibility over 1700 cycles. Importantly, the ZnO/GNP NC strain sensor holds perfect linearity (R2 = 0.999) in the whole working range, which can be attributed to the coupling effect between the ZnO NPs and the GNP. The ZnO/GNP NC strain sensor can not only detect large human motions such as elbow rotation, wrist rotation, clenching fist, and waving badminton racket, but also monitor subtle human motions in real time, such as pulse, phonation, coughing, and swallowing. The wide linear working range of the ZnO/GNP NC strain sensor makes it a potential choice for the application of wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang S, Xu J, Wang W, Wang GJN, Rastak R, Molina-Lopez F, Chung JW, Niu S, Feig VR, Lopez J, Lei T, Kwon SK, Kim Y, Foudeh AM, Ehrlich A, Gasperini A, Yun Y, Murmann B, Tok JBH, Bao Z (2018) Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555:83–88

    Article  CAS  Google Scholar 

  2. Harris KD, Elias AL, Chuang HJ (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51:2771–2805. https://doi.org/10.1007/s10853-015-9643-3

    Article  CAS  Google Scholar 

  3. Zhang B, Lei J, Qi DP, Liu ZY, Wang Y, Xiao GW, Wu JS, Zhang WN, Huo FW, Chen XD (2018) Stretchable conductive fibers based on a cracking control strategy for wearable electronics. Adv Funct Mater 28:1801683

    Article  CAS  Google Scholar 

  4. Yang TT, Xie D, Li ZH, Zhu HW (2017) Recent advances in wearable tactile sensors: materials, sensing mechanisms and device performance. Mater Sci Eng R Rep 115:1–37

    Article  Google Scholar 

  5. Amjadi M, Kyung KU, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Mater 26:1678–1698

    CAS  Google Scholar 

  6. Quang T, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28:4338–4372

    Article  CAS  Google Scholar 

  7. Zhang Y, Cui CQ, Yang B, Zhang K, Zhu PL, Li G, Sun R, Wong CQ (2018) Size-controllable copper nanomaterials for flexible printed electronics. J Mater Sci 53:12988–12995. https://doi.org/10.1007/s10853-018-2564-1

    Article  CAS  Google Scholar 

  8. Guo SZ, Qiu KY, Meng FB, Park SH, McAlpine MC (2017) 3D printed stretchable tactile sensors. Adv Mater 29:1701218

    Article  CAS  Google Scholar 

  9. Zou BH, Chen YY, Liu YH, Xie RJ, Du QJ, Zhang T, Shen Y, Zheng B, Li S, Wu JS, Zhang WN, Huang W, Huang X, Huo FW (2018) Repurposed leather with sensing capabilities for multifunctional electronic skin. Adv Sci 5:1801283

    Article  CAS  Google Scholar 

  10. Yue Y, Liu NS, Liu WJ, Li M, Ma YN, Luo C, Wang SL, Bao JY, Hu XK, Su J, Zhang Z, Huang Q, Gao YH (2018) 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50:79–87

    Article  CAS  Google Scholar 

  11. Lee HN, Glasper MJ, Li XD, Nychka JA, Batcheller J, Chuang HJ, Chen Y (2018) Preparation of fabric strain sensor based on graphene for human motion monitoring. J Mater Sci 53:9026–9033. https://doi.org/10.1007/s10853-018-2194-7

    Article  CAS  Google Scholar 

  12. Wang LL, Chen D, Jiang K, Shen GZ (2017) New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev 46:6764–6815

    Article  CAS  Google Scholar 

  13. Hua QL, Sun JL, Liu HT, Bao RR, Yu RM, Zhai JY, Pan CF, Wang ZL (2018) Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 9:244

    Article  CAS  Google Scholar 

  14. Deng WL, Yang T, Jin L, Yan C, Huang HC, Chu X, Wang ZX, Xiong D, Tian G, Gao YY, Zhang HT, Yang WQ (2019) Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 55:516–525

    Article  CAS  Google Scholar 

  15. Makireddi S, Shivaprasad S, Kosuri G, Varghese FV, Balasubramaniam K (2015) Electro-elastic and piezoresistive behavior of flexible MWCNT/PMMA nanocomposite films prepared by solvent casting method for structural health monitoring applications. Compos Sci Technol 118:101–107

    Article  CAS  Google Scholar 

  16. Xu MX, Qi JJ, Li F, Zhang Y (2018) Transparent and flexible tactile sensors based on graphene films designed for smart panels. J Mater Sci 53:9589–9597. https://doi.org/10.1007/s10853-018-2216-5

    Article  CAS  Google Scholar 

  17. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163

    Article  CAS  Google Scholar 

  18. Wang X, Li JF, Song HN, Huang HL, Gou J (2018) Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity. ACS Appl Mater Interfaces 10:7371–7380

    Article  CAS  Google Scholar 

  19. Yang Z, Wang DY, Pang Y, Li YX, Wang Q, Zhang TY, Wang JB, Liu X, Yang YY, Jian JM, Jian MQ, Zhang YY, Yang Y, Ren TL (2018) Simultaneously detecting subtle and intensive human motions based on Ag nanoparticles bridged graphene strain sensor. ACS Appl Mater Interfaces 10:3948–3954

    Article  CAS  Google Scholar 

  20. Yin B, Wen YW, Hong T, Xie ZS, Yuan GL, Ji QM, Jia HB (2017) Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces 9:32054–32064

    Article  CAS  Google Scholar 

  21. Yang Z, Pang Y, Han XL, Yang YF, Ling J, Jian MQ, Zhang YY, Yang Y, Ren TL (2018) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12:9134–9141

    Article  CAS  Google Scholar 

  22. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadinajafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301

    Article  CAS  Google Scholar 

  23. Gong W, Hou CY, Guo YB, Zhou J, Mu JK, Li YG, Zhang QH, Wang HZ (2017) A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy 39:673–683

    Article  CAS  Google Scholar 

  24. Dong XC, Wei Y, Chen S, Lin Y, Liu L, Li J (2018) A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos Sci Technol 155:108–116

    Article  CAS  Google Scholar 

  25. Nassar JM, Cordero MD, Kutbee AT, Karimi MA, Sevilla GAT, Hussain AM, Shamim A, Hussain MM (2016) Paper skin multisensory platform for simultaneous environmental monitoring. Adv Mater Technol 1:1600004

    Article  CAS  Google Scholar 

  26. Mu CH, Song YQ, Huang WT, Ran A, Sun RJ, Xie WH, Zhang HW (2018) Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv Funct Mater 28:1707503

    Article  CAS  Google Scholar 

  27. Guan LZ, Zhao L, Wan YJ, Tang LC (2018) Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale 10:14788–14811

    Article  CAS  Google Scholar 

  28. Qiang F, Hu LL, Gong LX, Zhao L, Li SN, Tang LC (2018) Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem Eng J 334:2154–2166

    Article  CAS  Google Scholar 

  29. Guan LZ, Gao JF, Pei YB, Zhao L, Gong LX, Wan YJ, Zhou HLZ, Zheng N, Du XS, Wu LB, Jiang JX, Liu HY, Tang LC, Mai YW (2016) Silane bonded graphene aerogels with tunable functionality and reversible compressibility. Carbon 107:573–582

    Article  CAS  Google Scholar 

  30. Zhang BX, Hou ZL, Yan W, Zhao QL, Zhan KT (2017) Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors. Carbon 125:199–206

    Article  CAS  Google Scholar 

  31. Ding YC, Yang J, Tolle C, Zhu ZT (2018) Flexible and compressible PEDOT:PSS@Melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl Mater Interfaces 10:16077–16086

    Article  CAS  Google Scholar 

  32. Wang YL, Hao J, Huang ZQ, Zheng GQ, Dai K, Liu CT, Shen CY (2018) Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126:360–371

    Article  CAS  Google Scholar 

  33. Scanaill CN, McGrath MJ (2013) Sensor technologies: healthcare, wellness and environmental applications. Apress Media, New York

    Google Scholar 

  34. Fiorillo AS, Critello CD, Pullano SA (2018) Theory, technology and applications of piezoresistive sensors: a review. Sens Actuator A Phys 281:156–175

    Article  CAS  Google Scholar 

  35. Sun JC, Zhang XW, Lang YY, Bian JM, Gao RX, Li PD, Wang YX, Li CR (2017) Piezo-phototronic effect improved performance of n-ZnO nano-arrays/p-Cu2O film based pressure sensor synthesized on flexible Cu foil. Nano Energy 32:96–104

    Article  CAS  Google Scholar 

  36. Luo C, Liu NS, Zhang H, Liu WJ, Yue Y, Wang SL, Rao JY, Yang CX, Su J, Jiang XL, Gao YH (2017) A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer. Nano Energy 41:527–534

    Article  CAS  Google Scholar 

  37. Sachdeva S, Soccol D, Gravesteijn DJ, Kapteijn F, Sudhölter EJR, Gascon J, de Smet LCPM (2016) Polymer-metal organic framework composite films as affinity layer for capacitive sensor devices. ACS Sens 1:1188–1192

    Article  CAS  Google Scholar 

  38. Ha MJ, Lim SD, Cho SW, Lee YG, Na SY, Baig CG, Ko HH (2018) Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 12:3964–3974

    Article  CAS  Google Scholar 

  39. Ke K, Potschke P, Wiegand N, Krause B, Voit B (2016) Tuning the network structure in poly(vinylidene fluoride)/carbon nanotube nanocomposites using carbon black: toward improvements of conductivity and piezoresistive sensitivity. ACS Appl Mater Interfaces 8:14190–14199

    Article  CAS  Google Scholar 

  40. Li YJ, Nie M, Wang Q (2018) Facile fabrication of electrically conductive low density polyethylene/carbon fiber tubes for novel smart materials via multi-axial orientation. ACS Appl Mater Interfaces 10:1005–1016

    Article  CAS  Google Scholar 

  41. Yang TT, Jiang X, Zhong YJ, Zhao XL, Lin SY, Li J, Li XM, Xu JL, Li ZH, Zhu HW (2017) A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens 2:967–974

    Article  CAS  Google Scholar 

  42. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695

    Article  CAS  Google Scholar 

  43. Nath NCD, Jeon IY, Ju MJ, Ansari SA, Baek JB, Lee JJ (2019) Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. Carbon 142:89–98

    Article  CAS  Google Scholar 

  44. Mendoza-Mendoza E, Nuñez-Briones AG, García-Cerda LA, Peralta-Rodríguez RD, Montes-Luna AJ (2018) One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity. Ceram Int 44:6176–6180

    Article  CAS  Google Scholar 

  45. Tahir M, Pan L, Zhang RR, Wang YC, Shen GQ, Aslam I, Qadeer MA, Mahmood N, Xu W, Wang L, Zhang XW, Zou JJ (2017) High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential. ACS Energy Lett 2(9):2177–2182

    Article  CAS  Google Scholar 

  46. Trejo M, Santiago P, Sobral H, Rendon L, Pal U (2009) Synthesis and growth mechanism of one-dimensional Zn/ZnO core-shell nanostructures in low-temperature hydrothermal process. Cryst Growth Des 9:3024–3030

    Article  CAS  Google Scholar 

  47. Shen JF, Hu YZ, Shi M, Lu X, Qin C, Li C, Ye MX (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520

    Article  CAS  Google Scholar 

  48. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  49. Moon IK, Lee JY, Ruoff RS, Lee HY (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73

    Article  CAS  Google Scholar 

  50. Mahmood N, Islam M, Hameed A, Saeed S, Khan AN (2014) Polyamide-6-based composites reinforced with pristine or functionalized multi-walled carbon nanotubes produced using melt extrusion technique. J Compos Mater 48(10):1197–1207

    Article  CAS  Google Scholar 

  51. Tang Y, Zhao Z, Hu H, Liu Y, Wang X, Zhou S, Qiu J (2015) Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl Mater Interfaces 7:27432–27439

    Article  CAS  Google Scholar 

  52. Hu T, Xuan SH, Ding L, Gong XL (2018) Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater Des 156:528–537

    Article  CAS  Google Scholar 

  53. Hosseinzadeh A, Bidmeshkipour S, Abdi Y, Arzi E, Mohajerzadeh S (2018) Graphene based strain sensors: a comparative study on graphene and its derivatives. Appl Surf Sci 448:71–77

    Article  CAS  Google Scholar 

  54. Nichols WW (2005) Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 18:3S–10S

    Article  Google Scholar 

  55. Xu L, Meng MQH, Shi C, Wang K, Li N (2008) Quantitative analyses of pulse images in Traditional Chinese Medicine. Med Acupunct 20:175–189

    Article  Google Scholar 

  56. Lu A, Jiang M, Zhang C, Chan K (2012) An integrative approach of linking traditional Chinese medicine pattern classification and biomedicine diagnosis. J Ethnopharmacol 141:549–556

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Key Research and Development Program of China (Nos. 2016YFB0300700 and 2016YFB0300704), the Natural Science Foundation of Shanghai (No. 17ZR1440900), and the Natural Science Foundation of China (Nos. 51602195, 51202142, and 51202144) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueting Chang or Yanhua Lei.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Guo, L., Chang, X. et al. A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. J Mater Sci 54, 7048–7061 (2019). https://doi.org/10.1007/s10853-019-03354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03354-6

Navigation