Skip to main content

Advertisement

Log in

Characterization and antimicrobial activity of a 2-O-methyl-β-cyclodextrin inclusion complex containing hexahydro-β-acids

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An inclusion complex of hexahydro-β-acids (HBA) and 2-O-methyl-β-cyclodextrin (M-β-CD) was prepared using the grinding method to improve the water solubility of HBA. Complex formation was assessed using ultraviolet and visible light (UV–Vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), nuclear magnetic resonance (1HNMR), and scanning electron microscopy (SEM). Results showed that the HBA molecule resided within the M-β-CD cavity. The water solubility test indicated that the effect of the M-β-CD encapsulation extended beyond increasing the solubility of HBA. Furthermore, the antibacterial activity of the HBA/M-β-CD inclusion complex, pure HBA, and M-β-CD against different food-related microorganisms was determined by an agar diffusion assay. Particularly, the HBA/M-β-CD inclusion complex exhibited better antibacterial activity against Listeria monocytogenes. These results suggest that incorporation of the HBA/M-β-CD inclusion complex in food might effectively inhibit L. monocytogenes growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Guo Y, Huang E, Yang X, Zhang L, Yousef AE, Zhong J (2016) Isolation and characterization of a Bacillus atrophaeus strain and its potential use in food preservation. Food Control 60:511–518

    Article  CAS  Google Scholar 

  2. Srikanth CV, Cherayil BJ (2007) Intestinal innate immunity and the pathogenesis of salmonella enteritis. Immunol Res 37(1):61–78

    Article  CAS  Google Scholar 

  3. Powell DA, Jacob CJ, Chapman BJ (2011) Enhancing food safety culture to reduce rates of foodborne illness. Food Control 22(6):817–822

    Article  Google Scholar 

  4. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113(1):1–15

    Article  Google Scholar 

  5. Mclauchlin J (1996) The relationship between Listeria and listeriosis. Food Control 7(4–5):187–193

    Article  Google Scholar 

  6. White DG, Zhao S, Simjee S, Wagner DD, Mcdermott PF (2002) Antimicrobial resistance of foodborne pathogens. Microbes Infect 4(4):405–412

    Article  CAS  Google Scholar 

  7. Shen X, Sun X, Xie Q, Liu H, Zhao Y, Pan Y, Hwang CA, Wu VCH (2014) Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and salmonella enteritidis. Food Control 35(1):159–165

    Article  CAS  Google Scholar 

  8. Gutiérrez-Larraínzar M, Rúa J, Caro I, Castro CD, Arriaga DD, García-Armesto MR, Valle PD (2012) Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control 26(2):555–563

    Article  CAS  Google Scholar 

  9. Wu CH, Qiu X, Bushway A, Harper L (2008) Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT Food Sci Technol 41(10):1834–1841

    Article  CAS  Google Scholar 

  10. Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21(9):1199–1218

    Article  CAS  Google Scholar 

  11. Lee KM, Jung JS, Song DK, Kraeuter M, Kim YH (1993) Effects of Humulus lupulus extract on the central nervous system in mice. Planta Med 59(7):A691

    Article  Google Scholar 

  12. Foster BC, Kearns N, Arnason JT, Saleem A, Ogrodowczyk C, Desjardins S (2009) Comparative study of hop-containing products on human cytochrome P450-mediated metabolism. J Agric Food Chem 57(11):5100–5105

    Article  CAS  Google Scholar 

  13. Natarajan P, Katta S, Andrei I, Babu RAV, Leonida M, Haas GJ (2008) Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics. Phytomedicine 15(3):194–201

    Article  CAS  Google Scholar 

  14. Chin YC, Chang NC, Anderson HH (1949) Factors influencing the antibiotic activity of lupulon. J Clin Investig 28(5 Pt 1):909–915

    Article  CAS  Google Scholar 

  15. Briggs DE, Boulton C, Brookes PA, Stevens R (2004) Brewing: science and practice. CRC Press, Boca Raton

    Book  Google Scholar 

  16. de Almeida NE, do Nascimento ESP, Cardoso DR (2012) On the reaction of lupulones, hops β-acids, with 1-hydroxyethyl radical. J Agric Food Chem 60(42):10649–10656

    Article  CAS  Google Scholar 

  17. Rückle L, Senn T (2006) Hop acids can efficiently replace antibiotics in ethanol production. Int Sugar J 108(1287):139–147

    Google Scholar 

  18. Yajima H, Ikeshima E, Shiraki M, Kanaya T, Fujiwara D, Odai H, Tsuboyamakasaoka N, Ezaki O, Oikawa S, Kondo K (2004) Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance. J Biol Chem 279(32):33456–33462

    Article  CAS  Google Scholar 

  19. Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15(7–8):330–347

    Article  CAS  Google Scholar 

  20. Sanguansri P, Augustin MA (2006) Nanoscale materials development: a food industry perspective. Trends Food Sci Technol 17(10):547–556

    Article  CAS  Google Scholar 

  21. Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE (2016) Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem 196:968–975

    Article  CAS  Google Scholar 

  22. Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25(5):313–326

    Article  CAS  Google Scholar 

  23. Song LX, Bai L, Xu XM, He J, Pan SZ (2009) Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coord Chem Rev 253(9–10):1276–1284

    Article  CAS  Google Scholar 

  24. Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Controll Release 123(2):78–99

    Article  CAS  Google Scholar 

  25. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666

    Article  CAS  Google Scholar 

  26. Tomren MA, Másson M, Loftsson T, Tønnesen HH (2007) Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm 338(1–2):27–34

    Article  CAS  Google Scholar 

  27. Blanchemain N, Karrout Y, Tabary N, Neut C, Bria M, Siepmann J, Hildebrand HF, Martel B (2011) Methyl-β-cyclodextrin modified vascular prosthesis: influence of the modification level on the drug delivery properties in different media. Acta Biomater 7(1):304–314

    Article  CAS  Google Scholar 

  28. Liu Y, Tang J, Liu K, Chen D (2008) Study on synthesis technology of hexahydro-beta acids, a novel antibacterial agent. Sci Technol Food Ind 29(11):225–229

    Google Scholar 

  29. Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51(1):86–93

    Article  CAS  Google Scholar 

  30. Zhang D, Zhang J, Jiang K, Li K, Cong Y, Pu S, Jin Y, Lin J (2016) Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin. Spectrochim Acta Part A Mol Biomol Spectrosc 152:501–508

    Article  CAS  Google Scholar 

  31. Gómez-Estaca J, Lacey ALD, López-Caballero ME, Gómez-Guillén MC, Montero P (2010) Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol 27(7):889–896

    Article  CAS  Google Scholar 

  32. Atwood JL, Lehn JM (1996) Comprehensive supramolecular chemistry, vol 34(3). Pergamon, New York, pp 199–206

    Google Scholar 

  33. Gao YA, Li ZH, Du JM, Prof BXH, Dr GZL, Hou WG, Shen D, Zheng LQ, Zhang GY (2005) Preparation and characterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chemistry 11(20):5875–5880

    Article  CAS  Google Scholar 

  34. Yuan C, Jin Z, Xu X (2012) Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydr Polym 89(2):492–496

    Article  CAS  Google Scholar 

  35. Michalska P, Wojnicz A, Ruiz-Nuño A, Abril S, Buendia I, León R (2017) Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: preparation, physical characterization and pharmacological effect. Carbohydr Polym 157:94–104

    Article  CAS  Google Scholar 

  36. Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15(3–4):137–142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (No. 31660490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Xu, H. & Liu, Y. Characterization and antimicrobial activity of a 2-O-methyl-β-cyclodextrin inclusion complex containing hexahydro-β-acids. J Mater Sci 54, 4287–4296 (2019). https://doi.org/10.1007/s10853-018-3148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3148-9

Keywords

Navigation