Skip to main content
Log in

A thermodynamic study of corrosion behaviors for CoCrFeNi-based high-entropy alloys

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To better understand the corrosion behaviors of CoCrFeNi-based high-entropy alloys (HEAs), the CALculation of PHAse Diagrams (CALPHAD) method was used to simulate the Pourbaix diagrams for CoCrFeNi, CoCrFeNiCu and CoCrFeNiAl HEAs. Although the CALPHAD simulations were performed under equilibrium conditions, assisted by published experimental results on CoCrFeNi, CoCrFeNiCu and CoCrFeNiAl0.5 HEAs, the CALPHAD simulations provide insights into the corrosion behaviors, such as the oxidation layer pitting and forming potential, of the CoCrFeNi-based HEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cantor B, Chang I, Knight P, Vincent A (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375:213–218

    Article  Google Scholar 

  2. Yeh JW, Chen SK, Lin SJ et al (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303

    Article  Google Scholar 

  3. Zhang Y, Zuo TT, Tang Z et al (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  4. Shun T-T, Chang L-Y, Shiu M-H (2012) Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mater Charact 70:63–67. https://doi.org/10.1016/j.matchar.2012.05.005

    Article  Google Scholar 

  5. Wang W-R, Wang W-L, Wang S-C, Tsai Y-C, Lai C-H, Yeh J-W (2012) Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26:44–51

    Article  Google Scholar 

  6. He JY, Wang H, Huang HL et al (2016) A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater 102:187–196. https://doi.org/10.1016/j.actamat.2015.08.076

    Article  Google Scholar 

  7. He F, Wang Z, Cheng P et al (2016) Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloy Compd 656:284–289. https://doi.org/10.1016/j.jallcom.2015.09.153

    Article  Google Scholar 

  8. He F, Wang Z, Niu S et al (2016) Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. J Alloy Compd 667:53–57. https://doi.org/10.1016/j.jallcom.2016.01.153

    Article  Google Scholar 

  9. Hsu Y-J, Chiang W-C, Wu J-K (2005) Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys 92:112–117. https://doi.org/10.1016/j.matchemphys.2005.01.001

    Article  Google Scholar 

  10. Shi Y, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK (2017) Corrosion of Al xCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros Sci 119:33–45

    Article  Google Scholar 

  11. Lin C-M, Tsai H-L (2011) Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 19:288–294

    Article  Google Scholar 

  12. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion, Houston

    Google Scholar 

  13. Pourbaix M (1973) Lectures on electrochemical corrosion. Plenum Press, New York

    Book  Google Scholar 

  14. McCafferty E (2010) Introduction to corrosion science. Springer, Berlin

    Book  Google Scholar 

  15. Zhang B, Gao M, Zhang Y, Yang S, Guo S (2015) Senary refractory high entropy alloy MoNbTaTiVW. Mater Sci Technol 31:1207–1213. https://doi.org/10.1179/1743284715Y.0000000031

    Article  Google Scholar 

  16. Gao MC, Zhang B, Yang S, Guo SM (2016) Senary refractory high-entropy alloy HfNbTaTiVZr. Metall Mater Trans A 47(7):3333–3345

    Article  Google Scholar 

  17. Zhang B, Gao M, Zhang Y, Guo S (2015) Senary refractory high-entropy alloy CrxMoNbTaVW. Calphad 51:193–201

    Article  Google Scholar 

  18. Zhang B, Mu Y, Gao M, Meng W, Guo S (2017) On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy. MRS Commun 7:78–83

    Article  Google Scholar 

  19. Plyasunov AV, Shock EL (2001) Correlation strategy for determining the parameters of the revised Helgeson–Kirkham–Flowers model for aqueous nonelectrolytes. Geochim Cosmochim Acta 65:3879–3900

    Article  Google Scholar 

  20. Zhang X (2011) Galvanic corrosion. Uhlig’s Corros Handb 51:123–143

    Article  Google Scholar 

  21. Roberge PR (2008) Corrosion engineering: principles and practice. McGraw-Hill, New York

    Google Scholar 

  22. Talbot DE, Talbot JD (2007) Corrosion science and technology. CRC Press, Boca Raton

    Google Scholar 

  23. Gulliver G (1915) The quantitative effect of rapid cooling upon the constitution of binary alloys. J Inst Met 13:263–291

    Google Scholar 

  24. Chou H-P, Chang Y-S, Chen S-K, Yeh J-W (2009) Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater Sci Eng B 163:184–189

    Article  Google Scholar 

  25. Singh AK, Subramaniam A (2014) On the formation of disordered solid solutions in multi-component alloys. J Alloy Compd 587:113–119. https://doi.org/10.1016/j.jallcom.2013.10.133

    Article  Google Scholar 

  26. Wu Z, Bei H, Otto F, Pharr GM, George EP (2014) Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46:131–140. https://doi.org/10.1016/j.intermet.2013.10.024

    Article  Google Scholar 

  27. Kao Y-F, Chen T-J, Chen S-K, Yeh J-W (2009) Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J Alloy Compd 488:57–64

    Article  Google Scholar 

  28. He F, Wang Z, Wu Q, Li J, Wang J, Liu CT (2017) Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr Mater 126:15–19. https://doi.org/10.1016/j.scriptamat.2016.08.008

    Article  Google Scholar 

  29. Kao Y-F, Chen S-K, Chen T-J, Chu P-C, Yeh J-W, Lin S-J (2011) Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J Alloy Compd 509:1607–1614

    Article  Google Scholar 

  30. Uhlig HH (2011) Uhlig’s corrosion handbook. Wiley, Hoboken

    Google Scholar 

  31. Castelli R (2009) Nuclear corrosion modeling: the nature of crud. Butterworth-Heinemann, Oxford

    Google Scholar 

  32. Craig BD (2013) Fundamental aspects of corrosion films in corrosion science. Springer, Berlin

    Google Scholar 

  33. Rahman A, Chawla V, Jayaganthan R, Chandra R, Ambardar R (2012) Hot corrosion of nanostructured Cr/Co–Al coatings. Surf Eng 28:285–293

    Article  Google Scholar 

  34. Ratke L, Diefenbach S (1995) Liquid immiscible alloys. Mater Sci Eng R Rep 15:263–347

    Article  Google Scholar 

  35. Wu P, Liu N, Zhou P et al (2016) Microstructures and liquid phase separation in multicomponent CoCrCuFeNi high entropy alloys. Mater Sci Technol 32:576–580

    Google Scholar 

  36. Oldfield JW (1988) Galvanic corrosion. ASTM International, West Conshohocken

    Google Scholar 

  37. Jien-Wei Y (2006) Recent progress in high entropy alloys. Ann Chim Sci Mat 31:633–648

    Article  Google Scholar 

  38. Ervin G (1952) Structural interpretation of the diaspore–corundum and boehmite–γ-Al2O3 transitions. Acta Crystallogr A 5:103–108

    Article  Google Scholar 

  39. Alwitt R, Diggle J (1976) Oxides and oxide films. Marcel Dekker, New York

    Google Scholar 

  40. Davis G, Moshier W, Long G, Black D (1991) Passive film structure of supersaturated Al–Mo Alloys. J Electrochem Soc 138:3194–3199

    Article  Google Scholar 

  41. Junqueira RMR, Loureiro CRDO, Andrade MS, Buono VTL (2008) Characterization of interference thin films grown on stainless steel surface by alternate pulse current in a sulphochromic solution. Mater Res 11:421–426

    Article  Google Scholar 

  42. S Fujimoto (2006) Pits and pores III: formation, properties, and significance for advanced materials. In: Proceedings of the international symposium. The Electrochemical Society

  43. Shifler DA, Aylor DM (2005) CORROSION 2005. NACE International, Houston

    Google Scholar 

Download references

Acknowledgements

The current work is funded by the NSF EPSCoR CIMM Project under Award #OIA-1541079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boliang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhang, Y. & Guo, S.M. A thermodynamic study of corrosion behaviors for CoCrFeNi-based high-entropy alloys. J Mater Sci 53, 14729–14738 (2018). https://doi.org/10.1007/s10853-018-2652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2652-2

Keywords

Navigation