Skip to main content

Advertisement

Log in

Morphologically modified surface with hierarchical micro-/nano-structures for enhanced bioactivity of titanium implants

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface morphology of titanium (Ti) implants plays an important role in regulating cell behaviors at the interface. The purpose of our study was to investigate the effect of surface structures from microscale to nanoscale on the proliferation and differentiation of precursor osteoblasts. Sandblasting and acid etching and anodic oxidation were used to fabricate the micro-structure and nano-structure on Ti surface. Physical properties including surface topography, roughness and wettability were measured by scanning electron microscopy, laser scanning microscopy and contact angle goniometry, respectively. The bioactivity and cytocompatibility of different surface morphology were investigated in vitro. The results showed that the hierarchical micro-/nano-structured surface composed of micro-valleys and self-assembly nanotubes was successfully constructed on the substrate of Ti. The hydrophilicity of the micro-/nano-structured surface was significantly heightened in comparison with the polished surface, micro-structured surface and nano-structured surface. Moreover, a compact layer of hydroxyapatite was observed on the micro-/nano-structured surface after immersing in simulated body fluid for 14 days. Higher proliferation rate and alkaline phosphatases activity as well as enhanced biomineralization were also verified on the hierarchically structured surface. All results indicated that the integration of multiscale structures of micro-valleys and nanotubes can provide a better surrounding microenvironment to improve cell sensitivities and promote the cell proliferation and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Zhao D, Witte F, Lu F, Wang J, Li J, Qin L (2017) Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 112:287–302. https://doi.org/10.1016/j.biomaterials.2016.10.017

    Article  Google Scholar 

  2. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54(3):397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  Google Scholar 

  3. Kaczmarek M, Jurczyk K, Koper JK, Paszel-Jaworska A, Romaniuk A, Lipińska N, Żurawski J, Urbaniak P, Jakubowicz J, Jurczyk MU (2016) In vitro biocompatibility of anodized titanium with deposited silver nanodendrites. J Mater Sci 51(11):5259–5270. https://doi.org/10.1007/s10853-016-9829-3

    Article  Google Scholar 

  4. Mishnaevsky L, Levashov E, Valiev RZ, Segurado J, Sabirov I, Enikeev N, Prokoshkin S, Solov’yov AV, Korotitskiy A, Gutmanas E, Gotman I, Rabkin E, Psakh’e S, Dluhoš L, Seefeldt M, Smolin A (2014) Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R Rep 81:1–19. https://doi.org/10.1016/j.mser.2014.04.002

    Article  Google Scholar 

  5. Sharmin N, Rudd CD (2017) Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review. J Mater Sci 52(15):8733–8760. https://doi.org/10.1007/s10853-017-0784-4

    Article  Google Scholar 

  6. Kokubo T, Yamaguchi S (2016) Novel bioactive materials developed by simulated body fluid evaluation: surface-modified Ti metal and its alloys. Acta Biomater 44:16–30. https://doi.org/10.1016/j.actbio.2016.08.013

    Article  Google Scholar 

  7. Li G, Cao H, Zhang W, Ding X, Yang G, Qiao Y, Liu X, Jiang X (2016) Enhanced osseointegration of hierarchical micro/nanotopographic titanium fabricated by microarc oxidation and electrochemical treatment. ACS Appl Mater Interfaces 8(6):3840–3852. https://doi.org/10.1021/acsami.5b10633

    Article  Google Scholar 

  8. Wang Y, Lou J, Zeng L, Xiang J, Zhang S, Wang J, Xiong F, Li C, Zhao Y, Zhang R (2017) Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4 V alloys. Appl Surf Sci 412:29–36. https://doi.org/10.1016/j.apsusc.2017.03.191

    Article  Google Scholar 

  9. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater off Pub Acad Dent Mater 23(7):844–854. https://doi.org/10.1016/j.dental.2006.06.025

    Google Scholar 

  10. Chu S-F, Huang M-T, Ou K-L, Sugiatno E, Cheng H-Y, Huang Y-H, Chiu W-T, Liou T-H (2016) Enhanced biocompatible and hemocompatible nano/micro porous surface as a biological scaffold for functionalizational and biointegrated implants. J Alloy Compd 684:726–732. https://doi.org/10.1016/j.jallcom.2016.05.134

    Article  Google Scholar 

  11. Rautray TR, Narayanan R, Kwon TY, Kim KH (2010) Surface modification of titanium and titanium alloys by ion implantation. J Biomed Mater Res B Appl Biomater 93(2):581–591. https://doi.org/10.1002/jbm.b.31596

    Article  Google Scholar 

  12. Zhao X, Peng C, You J (2017) Plasma-sprayed ZnO/TiO2 coatings with enhanced biological performance. J Therm Spray Technol 26(6):1301–1307. https://doi.org/10.1007/s11666-017-0573-2

    Article  Google Scholar 

  13. Liang J, Song R, Huang Q, Yang Y, Lin L, Zhang Y, Jiang P, Duan H, Dong X, Lin C (2015) Electrochemical construction of a bio-inspired micro/nano-textured structure with cell-sized microhole arrays on biomedical titanium to enhance bioactivity. Electrochim Acta 174:1149–1159. https://doi.org/10.1016/j.electacta.2015.06.100

    Article  Google Scholar 

  14. Peng L, Zhou S, Yang B, Bao M, Chen G, Zhang X (2017) Chemically modified surface having a dual-structured hierarchical topography for controlled cell growth. ACS Appl Mater Interfaces 9(28):24339–24347. https://doi.org/10.1021/acsami.7b06197

    Article  Google Scholar 

  15. Jeon H, Simon CG Jr, Kim G (2014) A mini-review: cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J Biomed Mater Res B Appl Biomater 102(7):1580–1594. https://doi.org/10.1002/jbm.b.33158

    Article  Google Scholar 

  16. Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, Stanford C (2017) Implant Surface Roughness Affects Osteoblast Gene Expression. J Dent Res 82(5):372–376. https://doi.org/10.1177/154405910308200509

    Article  Google Scholar 

  17. Park JYGCH, Davies JE (2001) Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22(19):2671–2682

    Article  Google Scholar 

  18. Stevens M (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138

    Article  Google Scholar 

  19. Leijten J, Khademhosseini A (2016) From nano to macro: multiscale materials for improved stem cell culturing and analysis. Cell Stem Cell 18(1):20–24. https://doi.org/10.1016/j.stem.2015.12.013

    Article  Google Scholar 

  20. Yao X, Peng R, Ding J (2013) Cell-material interactions revealed via material techniques of surface patterning. Adv Mater 25(37):5257–5286. https://doi.org/10.1002/adma.201301762

    Article  Google Scholar 

  21. Rani VV, Vinoth-Kumar L, Anitha VC, Manzoor K, Deepthy M, Shantikumar VN (2012) Osteointegration of titanium implant is sensitive to specific nanostructure morphology. Acta Biomater 8(5):1976–1989. https://doi.org/10.1016/j.actbio.2012.01.021

    Article  Google Scholar 

  22. Hori N, Iwasa F, Ueno T, Takeuchi K, Tsukimura N, Yamada M, Hattori M, Yamamoto A, Ogawa T (2010) Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dent Mater off Publ Acad Dent Mater 26(4):275–287. https://doi.org/10.1016/j.dental.2009.11.077

    Google Scholar 

  23. Wang G, Wan Y, Ren B, Wang T, Liu Z (2017) Surface functionalization of micro/nanostructured titanium with bioactive ions to regulate the behaviors of murine osteoblasts. Adv Eng Mater 19:1700299. https://doi.org/10.1002/adem.201700299

    Article  Google Scholar 

  24. Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD (2014) Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater 10(8):3363–3371. https://doi.org/10.1016/j.actbio.2014.03.037

    Article  Google Scholar 

  25. Huang J, Zhang X, Yan W, Chen Z, Shuai X, Wang A, Wang Y (2017) Nanotubular topography enhances the bioactivity of titanium implants. Nanomed Nanotechnol Biol Med 13(6):1913–1923. https://doi.org/10.1016/j.nano.2017.03.017

    Article  Google Scholar 

  26. Moon S-K, Kwon J-S, Uhm S-H, Lee E-J, Gu H-J, Eom T-G, Kim K-N (2014) Biological evaluation of micro–nano patterned implant formed by anodic oxidation. Curr Appl Phys 14:S183–S187. https://doi.org/10.1016/j.cap.2013.12.030

    Article  Google Scholar 

  27. Alves SA, Ribeiro AR, Gemini-Piperni S, Silva RC, Saraiva AM, Leite PE, Perez G, Oliveira SM, Araujo JR, Archanjo BS, Rodrigues ME, Henriques M, Celis JP, Shokuhfar T, Borojevic R, Granjeiro JM, Rocha LA (2017) TiO2 nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Adv 7(78):49720–49738. https://doi.org/10.1039/c7ra08263k

    Article  Google Scholar 

  28. Park JBS, Mark KVD et al (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686

    Article  Google Scholar 

  29. Bauer S, Park J, von der Mark K, Schmuki P (2008) Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater 4(5):1576–1582. https://doi.org/10.1016/j.actbio.2008.04.004

    Article  Google Scholar 

  30. Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, Ramón-Torregrosa PJ, Díaz-Rodríguez L, García-Martínez O, Vallecillo-Capilla M, Ruiz C, Cabrerizo-Vílchez MA (2010) Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Coll Surf A 365(1–3):222–229. https://doi.org/10.1016/j.colsurfa.2009.12.017

    Article  Google Scholar 

  31. Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10(7):2907–2918. https://doi.org/10.1016/j.actbio.2014.03.032

    Article  Google Scholar 

  32. Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25(14):2721–2730. https://doi.org/10.1016/j.biomaterials.2003.09.069

    Article  Google Scholar 

  33. Lee JH, Khang G, Lee JW, Lee HB (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci 205(2):323–330

    Article  Google Scholar 

  34. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  35. Shen X, Ma P, Hu Y, Xu G, Zhou J, Cai K (2015) Mesenchymal stem cell growth behavior on micro/nano hierarchical surfaces of titanium substrates. Coll Surf B 127:221–232. https://doi.org/10.1016/j.colsurfb.2015.01.048

    Article  Google Scholar 

  36. Wang T, Wan Y, Liu Z (2016) Fabrication of hierarchical micro/nanotopography on bio-titanium alloy surface for cytocompatibility improvement. J Mater Sci 51(21):9551–9561. https://doi.org/10.1007/s10853-016-0219-7

    Article  Google Scholar 

  37. Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R (2017) Biomineralization: from Material Tactics to Biological Strategy. Adv Mater 29(14):1605903. https://doi.org/10.1002/adma.201605903

    Article  Google Scholar 

Download references

Acknowledgement

This project was funded by National Natural Science Foundation of China [Grant Number 51575320] and Taishan Scholar Foundation [Grant Number TS20130922].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, B., Wan, Y., Wang, G. et al. Morphologically modified surface with hierarchical micro-/nano-structures for enhanced bioactivity of titanium implants. J Mater Sci 53, 12679–12691 (2018). https://doi.org/10.1007/s10853-018-2554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2554-3

Keywords

Navigation