Skip to main content
Log in

Mechanistic study of the reduction of MoO2 to Mo2C under methane pulse conditions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum carbide (Mo2C), an interstitial transition metal carbide, has been used in a myriad of industrial applications due to its refractory nature, extreme hardness and strength, and high electrical and thermal conductivity. It also possesses catalytic activity for many chemical processes such as hydrodeoxygenation, reforming, water–gas shift, and the Fischer–Tropsch reaction. Among the current synthesis methods available to produce β-Mo2C, temperature-programmed reduction yields materials with the highest specific surface areas. The objective of the present work is to perform a detailed investigation of the carburization process and to determine the key intermediate phases that are formed during reduction. To achieve this objective, we performed the carburization process under pulse conditions wherein a small amount of CH4 in each pulse was reacted with a packed bed of MoO2. Our XRD and TEM results demonstrate that the solid-phase transformation from MoO2 to β-Mo2C follows a “plum-pudding” mechanism where Mo metal crystallites are constantly formed as the key intermediate phase throughout the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Santhanam AT (1996) Application of transition metal carbides and nitrides in industrial tools. In: The chemistry of transition metal carbides and nitrides, pp 28–52

  2. Furimsky E (2003) Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl Catal A 240:1–28

    Article  Google Scholar 

  3. LaMont DC, Gilligan AJ, Darujati ARS, Chellappa AS, Thomson WJ (2003) The effect of Mo2C synthesis and pretreatment on catalytic stability in oxidative reforming environments. Appl Catal A Gen 255(2):239–253

    Article  Google Scholar 

  4. Ted Oyama S (1992) Crystal structure and chemical reactivity of transition metal carbides and nitrides. J Solid State Chem 96(2):442–445

    Article  Google Scholar 

  5. Oyama ST (1992) Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 15(2):179–200

    Article  Google Scholar 

  6. Griboval-Constant A, Giraudon JM, Leclercq G, Leclercq L (2004) Catalytic behaviour of cobalt or ruthenium supported molybdenum carbide catalysts for FT reaction. Appl Catal A Gen 260(1):35–45

    Article  Google Scholar 

  7. Aoki Y, Tominaga H, Nagai M (2013) Hydrogenation of CO on molybdenum and cobalt molybdenum carbide catalysts—mass and infrared spectroscopy studies. Catal Today 215:169–175

    Article  Google Scholar 

  8. Vo D-VN, Adesina AA (2012) A potassium-promoted Mo carbide catalyst system for hydrocarbon synthesis. Catal Sci Technol 2(10):2066

    Article  Google Scholar 

  9. Bkour Q, Im K, Marin-Flores OG, Norton MG, Ha SKJ (2018) Application of Ti-doped MoO2 microspheres prepared by spray pyrolysis to partial oxidation of n-dodecane. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2018.01.016

    Google Scholar 

  10. York APE, Claridge JB, Brungs AJ, Tsang SC, Green MLH (1997) Molybdenum and tungsten carbides as catalysts for the conversion of methane to synthesis gas using stoichiometric feedstocks. Chem Commun 1:39–40

    Article  Google Scholar 

  11. Setthapun W, Bej SK, Thompson LT (2008) Carbide and nitride supported methanol steam reforming catalysts: parallel synthesis and high throughput screening. Top Catal 49(1–2):73–80

    Article  Google Scholar 

  12. Lausche AC, Schaidle JA, Thompson LT (2011) Understanding the effects of sulfur on Mo2C and Pt/Mo2C catalysts: methanol steam reforming. Appl Catal A Gen 401(1–2):29–36

    Article  Google Scholar 

  13. Patt J, Moon D, Phillips C, Thompson L (2000) Molybdenum carbide catalysts for water–gas shift. Catal Lett 65(4):193–195

    Article  Google Scholar 

  14. Schaidle JA, Lausche AC, Thompson LT (2010) Effects of sulfur on Mo2C and Pt/Mo2C catalysts: water gas shift reaction. J Catal 272(2):235–245

    Article  Google Scholar 

  15. Moon JD, Ryu JW (2004) Molybdenum carbide water – gas shift catalyst for fuel cell-powered vehicles applications. Catal Lett 92(January):2–9

    Google Scholar 

  16. Schweitzer NM, Schaidle JA, Ezekoye OK, Pan X, Linic S, Thompson LT (2011) High activity carbide supported catalysts for water gas shift. J Am Chem Soc 133(8):2378–2381

    Article  Google Scholar 

  17. Frauwallner ML, López-Linares F, Lara-Romero J, Scott CE, Ali V, Hernández E et al (2011) Toluene hydrogenation at low temperature using a molybdenum carbide catalyst. Appl Catal A Gen 394(1–2):62–70

    Article  Google Scholar 

  18. Perret N, Wang X, Delannoy L, Potvin C, Louis C, Keane MA (2012) Enhanced selective nitroarene hydrogenation over Au supported on β-Mo 2C and β-Mo 2C/Al2O3. J Catal 286:172–183

    Article  Google Scholar 

  19. Lee JS, Yeom MH, Park KY, Nam IS, Chung JS, Kim YG et al (1991) Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. J Catal 128(1):126–136

    Article  Google Scholar 

  20. Hou R, Chang K, Chen JG, Wang T (2015) Replacing precious metals with carbide catalysts for hydrogenation reactions. Top Catal 58:240–246

    Article  Google Scholar 

  21. Pang M, Chen X, Xu Q, Liang C (2015) MoCx species embedded in ordered mesoporous silica framework with hierarchical structure for hydrogenation of naphthalene. Appl Catal A Gen 490:146–152

    Article  Google Scholar 

  22. Han J, Duan J, Chen P, Lou H, Zheng X, Hong H (2012) Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. Chemsuschem 5(4):727–733

    Article  Google Scholar 

  23. Han J, Duan J, Chen P, Lou H, Zheng X, Hong H (2011) Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chem 13(9):2561

    Article  Google Scholar 

  24. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X et al (2009) Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catal Today 147(2):77–85

    Article  Google Scholar 

  25. Ren H, Yu W, Salciccioli M, Chen Y, Huang Y, Xiong K et al (2013) Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts. Chemsuschem 6(5):798–801

    Article  Google Scholar 

  26. Wang Y, Wang H, Wei M, Ma J (2008) Study on the isomerization of n-hexane over β-zeolite supported molybdenum carbide catalyst. Pet Process Petrochem 39:16–19

    Google Scholar 

  27. Sayag C, Benkhaled M, Suppan S, Trawczynski J, Djéga-Mariadassou G (2004) Comparative kinetic study of the hydrodenitrogenation of indole over activated carbon black composites (CBC) supported molybdenum carbides. Appl Catal A Gen 275(1–2):15–24

    Article  Google Scholar 

  28. Adamski G, Dyrek K, Kotarba A, Sojka Z, Sayag C, Djéga-Mariadassou G (2004) Kinetic model of indole HDN over molybdenum carbide: influence of potassium on early and late denitrogenation pathways. Catal Today 90:115–119

    Article  Google Scholar 

  29. Puello-Polo E, Gutiérrez-Alejandre A, González G, Brito JL (2010) Relationship between sulfidation and HDS catalytic activity of activated carbon supported Mo, Fe–Mo, Co–Mo and Ni–Mo carbides. Catal Lett 135(3–4):212–218

    Article  Google Scholar 

  30. Puello-Polo E, Brito JL (2010) Effect of the activation process on thiophene hydrodesulfurization activity of activated carbon-supported bimetallic carbides. Catal Today 149(3–4):316–320

    Article  Google Scholar 

  31. Liu Y, Huang B, Xie Z (2018) Hydrothermal synthesis of core-shell MoO2/α-Mo2C heterojunction as high performance electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 427:693–701

    Article  Google Scholar 

  32. Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53(26):6705–6709

    Article  Google Scholar 

  33. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science (80-) 181(4099):547–549

    Article  Google Scholar 

  34. Hanif A, Xiao TC, York APE, Sloan J, Green MLH (2002) Study on the structure and formation mechanism of molybdenum carbides. Chem Mater 14(3):1009–1015

    Article  Google Scholar 

  35. Jung KT, Kim WB, Rhee CH, Lee JS (2004) Effects of transition metal addition on the solid-state transformation of molybdenum trioxide to molybdenum carbides. Chem Mater 16(2):307–314

    Article  Google Scholar 

  36. Lee JS, Volpe L, Ribeiro FH, Boudart M (1988) Molybdenum carbide catalysts. II. Topotactic synthesis of unsupported powders. J Catal 112(1):44–53

    Article  Google Scholar 

  37. Frank B, Friedel K, Girgsdies F, Huang X, Schlögl R, Trunschke A (2013) CNT-supported MoxC catalysts: effect of loading and carburization parameters. ChemCatChem 5(8):2296–2305

    Article  Google Scholar 

  38. Bouchy C, Pham-huu C, Ledoux MJ (2000) On the role of hydrogen during the reduction-carburation of MoO3 into molybdenum oxycarbide. J Mol Catal A Chem 162(1–2):317–334

    Article  Google Scholar 

  39. Cotter T, Frank B, Zhang W, Schlögl R, Trunschke A (2013) The impact of V doping on the carbothermal synthesis of mesoporous Mo carbides. Chem Mater 25(15):3124–3136

    Article  Google Scholar 

  40. Latimer AA, Aljama H, Kakekhani A, Yoo JS, Kulkarni A, Tsai C et al (2017) Mechanistic insights into heterogeneous methane activation. Phys Chem Chem Phys 19(5):3575–3581

    Article  Google Scholar 

  41. Chaudhury S, Mukerjee SK, Vaidya VN, Venugopal V (1997) Kinetics and mechanism of carbothermic reduction of MoO3 to Mo2C. J Alloys Compd 261(1–2):105–113

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to greatly acknowledge the Office of Naval Research (Grant No. N00014-15-1-2416). Also, the authors specially thank the Advanced Facility for Microscopy and Microanalysis (AFMM) at the Indian Institute of Science, Bangalore, for the imaging facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Grant Norton or Su Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bkour, Q., Cuba-Torres, C.M., Marin-Flores, O.G. et al. Mechanistic study of the reduction of MoO2 to Mo2C under methane pulse conditions. J Mater Sci 53, 12816–12827 (2018). https://doi.org/10.1007/s10853-018-2549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2549-0

Keywords

Navigation