Skip to main content
Log in

First-principles study of the nanotubes from the TiO2 hexagonal sheet

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using the method based on the density functional theory, the geometric and electronic properties of the TiO2 single-wall nanotubes, constructed by rolling the most stable nanosheet along the (n, 0) and (n, n) directions, have been investigated systematically. The nanotubes with size from n = 6 up to n = 20 have been modeled and studied. The strain energies of the nanotubes decrease monotonically as the radii of the nanotubes increase, regardless of the rolling direction. The band gaps of the nanotubes are increasing with the increase of the n value, approaching the value of the nanosheet. However, there is one nanotube significantly different from the others, i.e., the (6, 0) nanotube. The substantial structural change of (6, 0) nanotube causes a reduction of the band gap. Then, the isovalent sulfur (S) substitution and adsorption with the (6, 0) nanotube have been studied. Energetically, S adsorption at the inner surface is preferred. Electronically, the band gaps are further reduced by 35% for S substitution of oxygen and 22% for S adsorption, respectively, making the nanotube visible light-sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bianchi LC, Pirola C, Stucchi M et al (2016) A new frontier of photocatalysis employing micro-sized TiO2: air/water pollution abatement and self-cleaning/antibacterial applications. Semicond Photocatal Mater Mech Appl 23:635–666

    Google Scholar 

  2. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4:145–153

    Article  Google Scholar 

  3. Bavykin VD, Lapkin AA, Plucinski KP, Friedrich MJ, Walsh CF (2005) Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J Phys Chem B 109:19422–19427

    Article  Google Scholar 

  4. Bamwenda RG, Tsubota S, Nakamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. J Photochem Photobiol A: Chem 89:177–189

    Article  Google Scholar 

  5. Islam MM, Calatayud M, Pacchioni G (2011) Hydrogen adsorption and diffusion on the anatase TiO2 (101) surface: a first-principles investigation. J Phys Chem C 115:6809–6814

    Article  Google Scholar 

  6. Michael G (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  7. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285

    Article  Google Scholar 

  8. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Progress Solid State Chem 32:33–177

    Article  Google Scholar 

  9. Dachillf F, Simons YP, Roy R (1968) Pressure-temperature studies of anatase, brookite, rutile and TiO2-II. Am Mineral 53:1929–1939

    Google Scholar 

  10. Mo S-D, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B 51:13023–13032

    Article  Google Scholar 

  11. Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys: Condens Matter 24:195503

    Google Scholar 

  12. Tang H, Lévy F, Berger H, Schmid PE (1995) Urbach tail of anatase TiO2. Phys Rev B 52:7771–7774

    Article  Google Scholar 

  13. Amtout A, Leonelli R (1995) Optical properties of rutile near its fundamental band gap. Phys Rev B 51:6842–6851

    Article  Google Scholar 

  14. Jafari T, Moharreri E, Amin AS, Miao R, Song W, Suib LS (2016) Photocatalytic water splitting-the untamed dream: a review of recent advances. Molecules 21:900

    Article  Google Scholar 

  15. Kumar SG, Devi GL (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241

    Article  Google Scholar 

  16. Linsebigler LA, Lu G, Yates TJ (1995) Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  17. Choi W, Termin A, Hoffmann RM (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  18. Devi LG, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B: Environ 140–141:559–587

    Article  Google Scholar 

  19. Yang Z-Q, Qin L-L, Tian P-W, Zhang Y-X (2014) Review of N and metal co-doped TiO2 for water purification under visible light irradiation. IPCBEE 78:31–40

    Google Scholar 

  20. Zaleska A (2008) Doped-TiO2: a review. Recent Patents Eng 2:1872–2121

    Article  Google Scholar 

  21. Hattori A, Tokihisa Y, Tada H, Itob S (2000) Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO2/SnO2 bilayer-type catalyst. J Electrochem Soc 147:2279–2283

    Article  Google Scholar 

  22. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  Google Scholar 

  23. Ugeda MM, Bradley JA, Shi S-F et al (2014) Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 13:1091–1095

    Article  Google Scholar 

  24. Wang QH, Kalantar-Zadeh K, Kis A, Coleman NJ, Strano SM (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  Google Scholar 

  25. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5:7426–7435

    Article  Google Scholar 

  26. Barreca D, Carraro G, Comini E, Gasparotto A, Maccato C, Sada C, Sberveglieri G, Tondello E (2011) Novel synthesis and gas sensing performances of CuO-TiO2 nanocomposites functionalized with Au nanoparticles. J Phys Chem C 115:10510–10517

    Article  Google Scholar 

  27. Gong D, Craig AG, Oomman KV (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334

    Article  Google Scholar 

  28. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  Google Scholar 

  29. Kresse G, Furthmüller J (1996) Efficient interative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  30. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the eneralized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  Google Scholar 

  31. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  32. Hendrik JM, James DP (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  33. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509

    Article  Google Scholar 

  34. Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63:155409

    Article  Google Scholar 

  35. Pascual J, Camassel J, Mathieu H (1977) Resolved quadrupolar transition in TiO2. Phys Rev Lett 39:1490–1493

    Article  Google Scholar 

  36. Tang H, Berger H, Schmid PE, Levy F (1993) Photoluminescence in TiO2 anatase single crystals. Solid State Commun 87:847–850

    Article  Google Scholar 

  37. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118:8207–8215

    Article  Google Scholar 

  38. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106

    Article  Google Scholar 

  39. Meng QQ, Wang J-G, Xie Q, Li X-N (2010) Nanotubes from rutile TiO2 (110) sheets: formation and properties. J Phys Chem C 114:9251–9256

    Article  Google Scholar 

  40. Mowbray DJ, Martinez JI, Garcıa-Lastra JM, Thygesen KS, Jacobsen KW (2009) Stability and electronic properties of TiO2 nanostructures with and without B and N doping. J Phys Chem C 113:12301–12308

    Article  Google Scholar 

  41. Maeda T, Kobayashi Y, Kishi K (1999) Growth of ultra-thin titanium oxide on Cu(100), Fe/Cu(100) and ordered ultra-thin iron oxide studied by low-energy electron diVraction and X-ray photoelectron spectroscopy. Surf Sci 436:249–258

    Article  Google Scholar 

  42. Mannig A, Zhao Z, Rosenthal D, Christmann K, Hoster H, Rauscher H, Behm RJ (2005) Structure and growth of ultrathin titanium oxide films on Ru(0001). Surf Sci 576:29–44

    Article  Google Scholar 

  43. Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem 3:296–300

    Article  Google Scholar 

  44. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Academic, San Diego

    Google Scholar 

  45. Blasé X, Rubio A, Louie SG, Cohen MK (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335–340

    Article  Google Scholar 

  46. Ong WJ, Tan LL, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF SusChEM Program (Award No. DMR-1306291). The computational work was done at the High Performance Computing Center of the University of Texas at Arlington and the Texas Advanced Computing Centre (TACC) at the University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiao An or Qiming Zhang.

Ethics declarations

Conflict of interest

We hereby confirmed that there was no conflict of interest with the suggested reviewers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Peng, Y. & Zhang, Q. First-principles study of the nanotubes from the TiO2 hexagonal sheet. J Mater Sci 53, 15530–15540 (2018). https://doi.org/10.1007/s10853-018-2542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2542-7

Keywords

Navigation