Skip to main content

Advertisement

Log in

Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Room-temperature Na-ion batteries have been widely used as promising energy storage systems for large-scale storage due to the nature abundance and low cost of Na. However, the search for an anode with appropriate Na storage and high structural stability still remains challenging. In this work, the carbon microsphere films-coated Ni foam is prepared by a simple chemical vapor deposition method and is used as a novel anode for the long-lifespan Na-ion batteries. These carbon microspheres possess special onion-like structures that enhance the Na-ions intercalation and exhibit excellent Na storage properties. In addition, directly coating the carbon microsphere films on Ni foam current collectors without binders and conductive additives results in an integrated electrode structure, which avoids the undesirable interfaces and reduces the packaging volume. Compared to the common used hard carbon anode with long discharge plateau and short lifespan, this integrated electrode exhibits a slope discharge profile with higher security and demonstrates a long lifespan of 700 cycles with a high capacity retention of 83%. Furthermore, the storage mechanism of sodium ion is also investigated in detail by ex situ Raman, X-ray diffraction and nuclear magnetic resonance techniques in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  2. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657

    Article  Google Scholar 

  3. Wang F, Wang J, Ren H, Tang H, Yu R, Wang D (2016) Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg Chem Front 3:365–369

    Article  Google Scholar 

  4. Costa CM, Nunes-Pereira J, Sencadas V, Silva MM, Lanceros-Méndez S (2013) Effect of fiber orientation in gelled poly (vinylidene fluoride) electrospun membranes for Li-ion battery applications. J Mater Sci 48:6833–6840. https://doi.org/10.1007/s10853-013-7489-0

    Article  Google Scholar 

  5. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  Google Scholar 

  6. You Y, Wu X-L, Yin Y-X, Guo Y-G (2013) A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J Mater Chem A 1:14061–14065

    Article  Google Scholar 

  7. Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD (2016) Sodium ion batteries: free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater. https://doi.org/10.1002/aenm.201502217

    Google Scholar 

  8. Yuan S, Huang XL, Ma DL, Wang HG, Meng FZ, Zhang XB (2014) Engraving copper foil to give large-scale binder-free porous Cuo arrays for a high-performance sodium-ion battery anode. Adv Mater 26:2273–2279

    Article  Google Scholar 

  9. Chen J, Liu Y, Li W, Wu C, Xu L, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474. https://doi.org/10.1007/s10853-015-9092-z

    Article  Google Scholar 

  10. Kubota K, Asari T, Yoshida H, Yaabuuchi N, Shiiba H, Nakayama M, Komaba S (2016) Understanding the structural evolution and redox mechanism of a NaFeO2–NaCoO2 solid solution for sodium-ion batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.201601292

    Google Scholar 

  11. Wang PF, You Y, Yin YX, Wang YS, Wan LJ, Gu L, Guo YG (2016) Suppressing the P2–O2 phase transition of Na0. 67Mn0. 67Ni0. 33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 128:7571–7575

    Article  Google Scholar 

  12. Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900

    Article  Google Scholar 

  13. Zhu C, Song K, Van Aken PA, Maier J, Yu Y (2014) Carbon-Coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180

    Article  Google Scholar 

  14. Wang H, Liao X-Z, Yang Y, Yan X, He Y-S, Ma Z-F (2016) Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J Electrochem Soc 163:A565–A570

    Article  Google Scholar 

  15. You Y, Yao HR, Xin S, Yin YX, Zuo TT, Yang CP, Guo YG, Cui Y, Wan LJ, Goodenough JB (2016) Subzero-temperature cathode for a sodium-ion battery. Adv Mater. https://doi.org/10.1002/adma.201600846

    Google Scholar 

  16. Zheng Q, Yi H, Liu W, Li X, Zhang H (2017) Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochim Acta 238:288–297

    Article  Google Scholar 

  17. Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen ZX, Fan HJ (2015) Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15:565–573

    Article  Google Scholar 

  18. Balogun M-S, Luo Y, Lyu F, Wang F, Yang H, Li H, Liang C, Huang M, Huang Y, Tong Y (2016) Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl Mater Interfaces 8:9733–9744

    Article  Google Scholar 

  19. Li L, Seng KH, Li D, Xia Y, Liu HK, Guo Z (2014) SnSb@Carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res 7:1466–1476

    Article  Google Scholar 

  20. Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y-S, Li H, Yang X-Q, Chen L, Huang X (2013) A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat Commun. https://doi.org/10.1038/ncomms3365

    Google Scholar 

  21. Stevens D, Dahn J (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273

    Article  Google Scholar 

  22. Xu G, Li Z, Wei X, Yang L, Chu PK (2017) Monolithic hierarchical carbon assemblies embedded with mesoporous NaTi2(PO4)3 nanocrystals for flexible high-performance sodium anodes. Electrochim Acta 254:328–336

    Article  Google Scholar 

  23. Li M, Liu L, Wang P, Li J, Leng Q, Cao G (2017) Highly reversible sodium-ion storage in NaTi2(PO4)3/C composite nanofibers. Electrochim Acta 252:523–531

    Article  Google Scholar 

  24. Zhao G, Zou G, Qiu X, Li S, Guo T, Hou H, Ji X (2017) Rose-like N-Doped porous carbon for advanced sodium storage. Electrochim Acta 240:24–30

    Article  Google Scholar 

  25. Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wang C (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634

    Article  Google Scholar 

  26. Zhang N, Liu Y, Lu Y, Han X, Cheng F, Chen J (2015) Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res 8:3384–3393

    Article  Google Scholar 

  27. Roh H-K, Kim H-K, Kim M-S, Kim D-H, Chung KY, Roh KC, Kim K-B (2016) In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res 9:1844–1855

    Article  Google Scholar 

  28. Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178

    Article  Google Scholar 

  29. Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ion 28:1172–1175

    Article  Google Scholar 

  30. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  Google Scholar 

  31. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    Article  Google Scholar 

  32. Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  Google Scholar 

  33. Wu X-L, Liu Q, Guo Y-G, Song W-G (2009) Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem Commun 11:1468–1471

    Article  Google Scholar 

  34. Yang S, Feng X, Zhi L, Cao Q, Maier J, Müllen K (2010) Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 22:838–842

    Article  Google Scholar 

  35. Yan Y, Yin YX, Guo YG, Wan LJ (2014) A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.201301584

    Google Scholar 

  36. Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8:2916–2921

    Article  Google Scholar 

  37. Ye H, Xin S, Yin Y-X, Li J-Y, Guo Y-G, Wan L-J (2017) Stable Li plating/stripping electrochemistry realized by a hybrid li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc 139:5916–5922

    Article  Google Scholar 

  38. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877

    Article  Google Scholar 

  39. Zhou X, Guo YG (2014) Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 1:83–86

    Article  Google Scholar 

  40. Dahn JR, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590

    Article  Google Scholar 

  41. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418

    Article  Google Scholar 

  42. Hardwick LJ, Ruch PW, Hahn M, Scheifele W, Kötz R, Novák P (2008) In situ raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: first cycle effects. J Phys Chem Solids 69:1232–1237

    Article  Google Scholar 

  43. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867

    Article  Google Scholar 

  44. Alcántara R, Lavela P, Ortiz GF, Tirado JL (2005) Carbon microspheres obtained from resorcinol–formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid State Lett 8:A222–A225

    Article  Google Scholar 

  45. Bessada C, Anghel EM (2003) 11B, 23Na, 27Al, and 19F NMR study of solid and molten Na3AlF6–Na2B4O7. Inorg Chem 42:3884–3890

    Article  Google Scholar 

  46. Gotoh K, Ishikawa T, Shimadzu S, Yabuuchi N, Komaba S, Takeda K, Goto A, Deguchi K, Ohki S, Hashi K (2013) NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J Power Sour 225:137–140

    Article  Google Scholar 

  47. Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun. https://doi.org/10.1038/ncomms7362

    Google Scholar 

  48. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148:405–416

    Article  Google Scholar 

  49. Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sour 89:206–218

    Article  Google Scholar 

  50. Ye H, Yin Y-X, Zhang S-F, Shi Y, Liu L, Zeng X-X, Wen R, Guo Y-G, Wan L-J (2017) Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy 36:411–417

    Article  Google Scholar 

  51. Yan K, Lee HW, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14:6016–6022

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 51703052), the Fundamental Research Funds for the Central Universities of China (2662017QD028) and the Science and Technology Department of Hubei Province (2018FB238).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan Ye or Zhengbang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Su, Q., Zhang, Q. et al. Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries. J Mater Sci 53, 12421–12431 (2018). https://doi.org/10.1007/s10853-018-2515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2515-x

Keywords

Navigation