Skip to main content
Log in

Controlled fabrication of TiO2/C3N4 core–shell nanowire arrays: a visible-light-responsive and environmental-friendly electrode for photoelectrocatalytic degradation of bisphenol A

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photoelectrocatalytic (PEC) oxidation is a promising method in water treatment due to the synergistic effect of photocatalytic (PC) oxidation and electro-oxidation. Up to now, developing visible-light-responsive, efficient and environmental-friendly electrode for PEC degradation application is still a challenge. In this work, novel and environmental-friendly TiO2/C3N4 core–shell nanowire arrays as an electrode were investigated for PEC degradation of bisphenol A (BPA). TiO2 nanowire arrays provide a direct electron pathway, g-C3N4 serves as a stable and environmental-friendly visible light sensitizer, and effective charge spatial separation can be achieved across the well-matched core–shell interface. Compared with TiO2 nanowire arrays, TiO2/C3N4 core–shell nanowire arrays exhibit higher PC and PEC performance. The photocurrent response of the TiO2 nanowire arrays is enhanced about two times after C3N4 shell deposition. And the PEC performance of TiO2/C3N4 core–shell nanowire arrays is significantly enhanced, which is one time higher than that of TiO2 (under 1.0 V external potential). The enhancement of PEC performance of TiO2 nanowire arrays after C3N4 modification can be attributed to the synergistic photoelectric effect, well-matched interface and efficient charge separation induced by the type-II TiO2/C3N4 band alignment. Moreover, the intermediate products of BPA degradation by PEC oxidation were analyzed by gas chromatography–mass spectrometry and five specific products were identified, and then two possible pathways for BPA degradation by PEC process were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mills A, Hunte SL (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35

    Article  Google Scholar 

  2. Hernández Alonso MD, Fresno SSF, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  Google Scholar 

  3. Xiao P, Lou J, Zhang H et al (2018) Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight. Catal Sci Technol 8:201–209

    Article  Google Scholar 

  4. Chang S, Wang Q, Liu B, Sang Y, Liu H (2017) Hierarchical TiO2 nanonetwork-porous Ti 3D hybrid photocatalysts for continuous-flow photoelectrodegradation of organic pollutants. Catal Sci Technol 7:524–532

    Article  Google Scholar 

  5. Li XZ, Liu HS (2005) Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment. Environ Sci Technol 39:4614–4620

    Article  Google Scholar 

  6. Quan X, Yang S, Ruan X, Zhao H (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39:3770–3775

    Article  Google Scholar 

  7. Wang Y, Zhan X, Wang F, Wang Q et al (2014) Crystalline ZnO/ZnS x Se1−x core-shell nanowire arrays for efficient visible-light photoelectrocatalysis. J Mater Chem A 2:18413–18419

    Article  Google Scholar 

  8. Zanoni MVB, Sene JJ, Anderson MA (2003) Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. J Photochem Photobiol A 157:55–63

    Article  Google Scholar 

  9. Wang Y, Shi R, Lin J, Zhu Y (2010) Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl Catal B Environ 100:179–183

    Article  Google Scholar 

  10. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    Article  Google Scholar 

  11. Tachikawa T, Fujitsuka M, Majima T (2007) Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J Phys Chem C 111:5259–5275

    Article  Google Scholar 

  12. Li H, Cheng C, Li X, Liu J, Guan C, Tay YY et al (2011) Composition-graded Zn x Cd1−xSe@ZnO core-shell nanowire array electrodes for photoelectrochemical hydrogen generation. J Phys Chem C 116:3802–3807

    Article  Google Scholar 

  13. Wang Y, Wang F, He J (2013) Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 5:11291–11297

    Article  Google Scholar 

  14. Cao X, Tian G, Chen Y, Zhou J, Zhou W, Tian C et al (2014) Hierarchical composites of TiO2 nanowire arrays on reduced graphene oxide nanosheets with enhanced photocatalytic hydrogen evolution performance. J Mater Chem A 2:4366–4374

    Article  Google Scholar 

  15. Wang C, Chen Z, Jin H, Cao C, Li J, Mi Z (2014) Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J Mater Chem A 2:17820–17827

    Article  Google Scholar 

  16. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134:3659–3662

    Article  Google Scholar 

  17. Pu YC, Wang G, Chang KD, Ling Y, Lin YK, Fitzmorris BC et al (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823

    Article  Google Scholar 

  18. Teng W, Li X, Zhao Q, Chen G (2013) Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation. J Mater Chem A 1:9060–9068

    Article  Google Scholar 

  19. Liu S, Li H, Mo R, Chen Q, Yang S, Zhong J (2016) ZnSe sensitized and Co-Pi catalyzed TiO2 nanowire array photoanode for solar-driven water splitting. J Electrochem Soc 163:H744–H749

    Article  Google Scholar 

  20. Ai G, Sun W, Gao X, Zhang Y, Peng LM (2011) Hybrid CdSe/TiO2 nanowire photoelectrodes: fabrication and photoelectric performance. J Mater Chem 21:8749–8755

    Article  Google Scholar 

  21. Ai G, Li H, Liu S, Mo R, Zhong J (2015) Solar water splitting by TiO2/CdS/Co-Pi nanowire array photoanode enhanced with Co–Pi as hole transfer relay and CdS as light absorber. Adv Funct Mater 25:5706–5713

    Article  Google Scholar 

  22. Yang H, Fan W, Vaneski A, Susha AS, Teoh WY, Rogach AL (2012) Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv Funct Mater 22:2821–2829

    Article  Google Scholar 

  23. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang KQ et al (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801

    Article  Google Scholar 

  24. Mahadik MA, Shinde PS, Cho M, Jang JS (2015) Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance: effect of cascading electron–hole transfer. J Mater Chem A 3:23597–23606

    Article  Google Scholar 

  25. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  Google Scholar 

  26. Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y et al (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681

    Article  Google Scholar 

  27. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem Rev 116:7159–7329

    Article  Google Scholar 

  28. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Edit 51:68–89

    Article  Google Scholar 

  29. Wang Y, Shi R, Lin J, Zhu Y (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929

    Article  Google Scholar 

  30. Wang Y, Bai X, Pan C, He J, Zhu Y (2012) Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J Mater Chem 22:11568–11573

    Article  Google Scholar 

  31. Wang Y, Wang Z, Muhammad S, He J (2012) Graphite-like C3N4 hybridized ZnWO4 nanorods: synthesis and its enhanced photocatalysis in visible light. Cryst Eng Comm 14:5065–5070

    Article  Google Scholar 

  32. Hao R, Wang G, Tang H, Sun L, Xu C, Han D (2016) Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B-Environ 187:47–58

    Article  Google Scholar 

  33. Chen X, Wei J, Hou R, Liang Y, Xie Z, Zhu Y et al (2016) Graphene-based photocatalytic composites. Appl Catal B Environ 188:342–350

    Article  Google Scholar 

  34. Zhou J, Zhang M, Zhu Y (2015) Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. Phys Chem Chem Phys 17:3647–3652

    Article  Google Scholar 

  35. Gu L, Wang J, Zou Z, Han X (2014) Graphitic-C3N4-hybridized TiO2 nanosheets with reactive 001 facets to enhance the UV-and visible-light photocatalytic activity. J Hazard Mater 268:216–223

    Article  Google Scholar 

  36. Yang L, Li Z, Jiang H, Jiang W, Su R, Luo S et al (2016) Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO2/graphene/Cu2O. Appl Catal B-Environ 183:75–85

    Article  Google Scholar 

  37. Xiang G, Yu Z, Hou Y, Chen Y, Peng Z, Sun L et al (2016) Simulated solar-light induced photoelectrocatalytic degradation of bisphenol-A using Fe3+-doped TiO2 nanotube arrays as a photoanode with simultaneous aeration. Sep Purif Technol 161:144–151

    Article  Google Scholar 

  38. Feng X, Shankar K, Varghese K, Paulose M, Latempa J, Grimes A (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8:3781–3786

    Article  Google Scholar 

  39. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  Google Scholar 

  40. Zheng Y, Lin L, Wang B, Wang X (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem Int Edit 54:12868–12884

    Article  Google Scholar 

  41. Wang XJ, Yang WY, Li FT, Xue YB, Liu RH, Hao YJ (2013) In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res 52:17140–17150

    Article  Google Scholar 

  42. Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901

    Article  Google Scholar 

  43. Ng J, Wang X, Sun D (2011) One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A. Appl Catal B Environ 110:260–272

    Article  Google Scholar 

  44. Ng J, Xu S, Zhang X, Yang H, Sun D (2010) Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv Funct Mater 20:4287–4294

    Article  Google Scholar 

  45. Leng WH, Zhang Z, Zhang JQ, Cao CN (2005) Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J Phys Chem B 109:15008–15023

    Article  Google Scholar 

  46. Wang Y, Xu J, Zong W, Zhu Y (2011) Enhancement of photoelectric catalytic activity of TiO2 film via polyaniline hybridization. J Solid State Chem 184:1433–1438

    Article  Google Scholar 

  47. Zhao X, Xu T, Yao W, Zhang C, Zhu Y (2007) Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation. Appl Catal B-Environ 72:92–97

    Article  Google Scholar 

  48. Zhang T, Ding Y, Tang H (2015) Generation of singlet oxygen over Bi(V)/Bi(III) composite and its use for oxidative degradation of organic pollutants. Chem Eng J 264:681–689

    Article  Google Scholar 

  49. Han Q, Wang H, Dong W, Liu T, Yin Y, Fan H (2015) Degradation of bisphenol A by ferrate (VI) oxidation: kinetics, products and toxicity assessment. Chem Eng J 262:34–40

    Article  Google Scholar 

  50. Wang C, Zhu L, Wei M, Chen P, Shan G (2012) Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water. Water Res 46:845–853

    Article  Google Scholar 

  51. Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36:3872–3878

    Article  Google Scholar 

  52. Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326–8339

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant Nos. 91645108, U1162117, 21307020), Beijing Nova Program (Grant No. Z161100004916121), Prospect Oriented Foundation of China University of Petroleum, Beijing (Grant No. QZDX-2014-02), Beijing Higher Education Young Elite Teacher Project (YETP0696), Beijing Natural Science Foundation (Grant No. 2144059) and Science Foundation of China University of Petroleum, Beijing (Grant Nos. 2462014YJRC010, C201604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyuan Jiang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, Q., Li, Y. et al. Controlled fabrication of TiO2/C3N4 core–shell nanowire arrays: a visible-light-responsive and environmental-friendly electrode for photoelectrocatalytic degradation of bisphenol A. J Mater Sci 53, 11015–11026 (2018). https://doi.org/10.1007/s10853-018-2368-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2368-3

Keywords

Navigation