Skip to main content

Advertisement

Log in

A high strength semi-degradable polysaccharide-based hybrid hydrogel for promoting cell adhesion and proliferation

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Traditionally, practical applications of polysaccharide hydrogels have been limited for their weak mechanical properties under physiological conditions. In this study, we constructed a novel polysaccharide-based semi-degradable hydrogel whose network was constructed by chemical cross-linking of glycidyl methacrylate-modified laminarin and the hydrogen bonded physical cross-linking of poly(N-acryloyl glycinamide). In addition, the introduction of 1-vinyl-1,2,4-triazole content could increase the equilibrium water content of hydrogels and endow hydrogels with anti-bacterial and anti-inflammatory abilities. The prepared hydrogels exhibited comprehensive high mechanical properties up to 0.63 MPa tensile strength, 650% stretchability, and maximum 3.2 MPa compressive strength at swelling equilibrium state. The hydrogen bond interactions could well support the three-dimensional network of hydrogel after the degradation of modified laminarin. Meanwhile, the content of laminarin could facilitate cell adhesion and proliferation on the surface of hydrogel. It is anticipated that this high strength semi-degraded hydrogel may find a promising application as articular cartilage replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5

Similar content being viewed by others

References

  1. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  2. Ito K (2007) Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J 39:489–499

    Article  CAS  Google Scholar 

  3. Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11:47–54

    Article  CAS  Google Scholar 

  4. Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201

    Article  CAS  Google Scholar 

  5. Li W, An H, Tan Y et al (2012) Hydrophobically associated hydrogels based on acrylamide and anionic surface active monomer with high mechanical strength. Soft Matter 8:5078–5086

    Article  CAS  Google Scholar 

  6. Sakai T, Matsunaga T, Yamamoto Y et al (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384

    Article  CAS  Google Scholar 

  7. Huang T, Xu H, Jiao K et al (2007) A novel hydrogel with high mechanical strength: a macromolecular microshpere composite hydrogel. Adv Mater 19:1622–1626

    Article  CAS  Google Scholar 

  8. Wang Q, Zhang YY, Dai XY, Shi XH, Liu WG (2017) A high strength pH responsive supramolecular copolymer hydrogel. Sci China Tech Sci 60:78–83

    Article  CAS  Google Scholar 

  9. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11:20140817

    Article  Google Scholar 

  10. Mano JF, Silva GA, Azevedo HS et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Article  CAS  Google Scholar 

  11. Senni K, Pereira J, Gueniche F et al (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681

    Article  CAS  Google Scholar 

  12. Silva TH, Ferreira BM, Oliveira JM et al (2012) Materials of marine origin a review on polymers and ceramics of biomedical interest. Int Mater Rev 57:276–307

    Article  CAS  Google Scholar 

  13. Alderkamp AC, Rijssel M, Bolhuis H (2007) Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. FEMS Microbiol Ecol 59:108–117

    Article  CAS  Google Scholar 

  14. Shin HJ, Oh JS, Kim SI, Kim HW, Son JH (2009) Conformational characteristics of beta-glucan in laminarin probed by terahertz spectroscopy. Appl Phys Lett 94:111911–111913

    Article  Google Scholar 

  15. Kim KH, Kim YW, Kim HB, Lee BJ, Lee DS (2006) Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnol Lett 28:439–446

    Article  CAS  Google Scholar 

  16. Menshova RV, Ermakova SP, Anastyuk SD et al (2014) Structure, enzymatic transformation and anticancer activity of branched high molecular weight laminaran from brown alga Eisenia bicyclis. Carbohydr Polym 99:101–109

    Article  CAS  Google Scholar 

  17. Ermakova S, Men’shova R, Vishchuk O et al (2013) Water-soluble polysaccharides from the brown alga Eisenia bicyclis Structural characteristics and antitumor activity. Algal Res 2:51–58

    Article  Google Scholar 

  18. Custódio CA, Reis RL, Mano JF (2016) Photo-cross-linked laminarin-based hydrogels for biomedical applications. Biomacromolecules 17:1602–1609

    Article  Google Scholar 

  19. Fan M, Ma Y, Tan H et al (2017) Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Mater Sci Eng C Mater Biol Appl 71:67–74

    Article  CAS  Google Scholar 

  20. Hu J, Quan Y, Lai Y et al (2017) A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J Control Release 247:145–152

    Article  CAS  Google Scholar 

  21. Wei Z, Zhao J, Chen YM, Zhang P, Zhang Q (2016) Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Sci Rep 6:37841–37852

    Article  CAS  Google Scholar 

  22. Travan A, Scognamiglio F, Borgogna M et al (2016) Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications. Carbohydr Polym 150:408–418

    Article  CAS  Google Scholar 

  23. Liu J, Qi C, Tao K et al (2016) Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl Mater Interfaces 8:6411–6422

    Article  CAS  Google Scholar 

  24. Cho IS, Cho MO, Li Z et al (2016) Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydr Polym 144:59–67

    Article  CAS  Google Scholar 

  25. Xu J, Tam M, Samaei S et al (2017) Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater 48:247–257

    Article  CAS  Google Scholar 

  26. Dai X, Zhang Y, Gao L et al (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27:3566–3571

    Article  CAS  Google Scholar 

  27. Colanceska-Ragenovic K, Dimova V, Kakurinov V, Molnar DG, Buzarovsk A (2001) Synthesis, antibacterial and antifungal activity of 4-substituted-5-aryl-1,2,4-triazoles. Molecules 6:815–824

    Article  CAS  Google Scholar 

  28. Sztanke K, Tuzimski T, Rzymowska J, Pasternak K, Kandefer-Szerszeń M (2008) Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur J Med Chem 43:404–419

    Article  CAS  Google Scholar 

  29. Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK (2013) New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur J Med Chem 62:410–415

    Article  CAS  Google Scholar 

  30. Ezabadi IR, Camoutsis C, Zoumpoulakis P et al (2008) Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg Med Chem 16:1150–1161

    Article  CAS  Google Scholar 

  31. Sumrra SH, Chohan ZH (2013) In vitro antibacterial antifungal and cytotoxic activities of some triazole Schiff bases and their oxovanadium IV complexes. J Enzyme Inhib Med Chem 28:1291–1299

    Article  CAS  Google Scholar 

  32. Almajan GL, Barbuceanu SF, Almajan ER, Draghici C, Saramet G (2009) Synthesis, characterization and antibacterial activity of some triazole Mannich bases carrying diphenylsulfone moieties. Eur J Med Chem 44:3083–3089

    Article  CAS  Google Scholar 

  33. Dijk-Wolthuis WNE, Bosch JJK, Hoof AK, Hennink WE (1997) Reaction of dextran with glycidyl methacrylate an unexpected transesterification. Macromolecules 30:3411–3413

    Article  Google Scholar 

  34. Ren X, Liu L, Zhou Y et al (2016) Nanoparticle siRNA against BMI-1 with polyethylenimine-laminarin conjugate for gene therapy in human breast cancer. Bioconjugate Chem 27:66–73

    Article  CAS  Google Scholar 

  35. Wang H, Zhu H, Fu W et al (2017) A high strength self-healable antibacterial and anti-inflammatory supramolecular polymer hydrogel. Macromol Rapid Commun 38:1600695

    Article  Google Scholar 

  36. Cao Y, Xiong D, Wang K, Niu Y (2017) Semi-degradbale porous PVA hydrogel scaffold for cartilage repair: evaluation of the initial and cell cultured tribological porperties. J Mech Behav Biomed Mater 68:163–172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for this work from National Natural Science Foundation (Grant Nos. 51325305, 51733006, 51303132), National Key Research and Development Program (Grant No. 2016YFC1101301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguang Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3931 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, Z., Wu, Y. et al. A high strength semi-degradable polysaccharide-based hybrid hydrogel for promoting cell adhesion and proliferation. J Mater Sci 53, 6302–6312 (2018). https://doi.org/10.1007/s10853-018-2019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2019-8

Navigation