Skip to main content
Log in

Preparation of polycarbonate/gelatine microspheres using a high-voltage electrostatic technique for enhancing the adhesion and proliferation of mesenchymal stem cells

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a high-voltage electrostatic technique is introduced to prepare polycarbonate (PC) microspheres in order to design an expansion strategy for the bone marrow mesenchymal stem cells (BMMSCs). The effects of the solution concentration, temperature, nozzle specification and voltage on the sphericity, homogeneity, diameter and sedimentation velocities of the microspheres are investigated. By optimising the preparation parameters, PC microspheres with a diameter of 316.39 μm ± 14.75 μm and porous surface were prepared. The gelatine-modified PC (GEL-PC) microspheres exhibited better hydrophilicity and protein adsorption ability than PC microspheres. Enhancement of the adhesion and proliferation of the BMMSCs can be observed on GEL-PC microspheres after 7 days. Therefore, this study demonstrates that employing a dynamic culture using GEL-PC microspheres is a promising method for deriving BMMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Freimark D, Pino-Grace P, Pohl S, Weber C, Wallrapp C, Geigle P, Poertner R, Czermaka P (2010) Use of encapsulated stem cells to overcome the bottleneck of cell availability for cell therapy approaches. Transfus Med Hemother 37(2):66–73

    Article  CAS  Google Scholar 

  2. Escacena N, Quesada-Hernandez E, Capilla-Gonzalez V, Soria B, Hmadcha A (2015) Bottlenecks in the efficient use of advanced therapy medicinal products based on mesenchymal stromal cells. In: Stem cells international, Article ID 895714

  3. Carlsson P-O, Schwarcz E, Korsgren O, Le Blanc K (2015) Preserved beta-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes 64(2):587–592

    Article  CAS  Google Scholar 

  4. Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 95(12):1535–1541

    Article  CAS  Google Scholar 

  5. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11(2):150–156

    Article  Google Scholar 

  6. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    Article  Google Scholar 

  7. Lee JW, Lee SH, Youn YJ, Ahn MS, Kim JY, Yoo BS, Yoon J, Kwon W, Hong IS, Lee K, Kwan J (2014) A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci 29(1):23–31

    Article  Google Scholar 

  8. Dhere T, Copland I, Garcia M, Chiang KY, Chinnadurai R, Prasad M, Galipeau J, Kugathasan S (2016) The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease—a phase 1 trial with three doses. Aliment Pharmacol Ther 44(5):471–481

    Article  CAS  Google Scholar 

  9. Godara P, McFarland CD, Nordon RE (2008) Design of bioreactors for mesenchymal stem cell tissue engineering. J Chem Technol Biotechnol 83(4):408–420

    Article  CAS  Google Scholar 

  10. King JA, Miller WM (2007) Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 11(4):394–398

    Article  CAS  Google Scholar 

  11. Sun LY, Lin SZ, Li YS, Harn HJ, Chiou TW (2011) Functional cells cultured on microcarriers for use in regenerative medicine research. Cell Transplant 20(1):49–62

    Article  CAS  Google Scholar 

  12. Rodrigues CAV, Fernandes TG, Diogo MM, da Silva CL, Cabral JMS (2011) Stem cell cultivation in bioreactors. Biotechnol Adv 29(6):815–829

    Article  CAS  Google Scholar 

  13. Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J (2007) A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Biotechnol Prog 23(1):187–193

    Article  CAS  Google Scholar 

  14. Schop D, Janssen FW, Borgart E, de Bruijn JD, van Dijkhuizen-Radersma R (2008) Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism. J Tissue Eng Regen Med 2(2–3):126–135

    Article  CAS  Google Scholar 

  15. Schop D, van Dijkhuizen-Radersma R, Borgart E, Janssen FW, Rozemuller H, Prins HJ, de Bruijn JD (2010) Expansion of human mesenchymal stromal cells on microcarriers: growth and metabolism. J Tissue Eng Regen Med 4(2):131–140

    Article  CAS  Google Scholar 

  16. dos Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, Boucher S, Vemuri MC, da Silva CL, Cabral JMS (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 17(12):1201–1210

    Article  CAS  Google Scholar 

  17. Eibes G, dos Santos F, Andrade PZ, Boura JS, Abecasis MMA, da Silva CL, Cabral JMS (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier–based stirred culture system. J Biotechnol 146(4):194–197

    Article  CAS  Google Scholar 

  18. Sun LY, Hsieh DK, Syu WS, Li YS, Chiu HT, Chiou TW (2010) Cell proliferation of human bone marrow mesenchymal stem cells on biodegradable microcarriers enhances in vitro differentiation potential. Cell Prolif 43(5):445–456

    Article  CAS  Google Scholar 

  19. Liu X, Feng X, Xu X, Wang F, Wang Y (2018) Sol-assisted spray-drying synthesis of porous Li3V2(PO4)(3)/C microspheres as high-activity cathode materials for lithium-ion batteries. J Sol Gel Sci Technol 86(2):343–350

    Article  CAS  Google Scholar 

  20. Eskandarloo H, Zaferani M, Kierulf A, Abbaspourrad A (2018) Shape–controlled fabrication of TiO2 hollow shells toward photocatalytic application. Appl Catal B Environ 227:519–529

    Article  CAS  Google Scholar 

  21. Li BZ, Xian XQ, Wang Y, Adhikari B, Chen D (2018) Production of recrystallized starch microspheres using water-in-water emulsion and multiple recycling of polyethylene glycol solution. LWT Food Sci Technol 97:76–82

    Article  CAS  Google Scholar 

  22. Li C, He M, Tong Z, Li Y, Sheng W, Luo L, Tong Y, Yu H, Huselstein C, Chen Y (2016) Construction of biocompatible regenerated cellulose/SPI composite beads using high-voltage electrostatic technique. Rsc Adv 6(58):52528–52538

    Article  CAS  Google Scholar 

  23. Stojanovic R, Belscak‐Cvitanovic A, Manojlovic V, Komes D, Nedovic V, Bugarski B (2012) Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. J Sci Food Agric 92(3):685–696

    Article  CAS  Google Scholar 

  24. Shang Y, Ding F, Xiao L, Deng H, Du Y, Shi X (2014) Chitin–based fast responsive pH sensitive microspheres for controlled drug release. Carbohyd Polym 102:413–418

    Article  CAS  Google Scholar 

  25. Pi C, Yuan J, Liu H, Zuo Y, Feng T, Zhan C, Wu J, Ye Y, Zhao L, Wei Y (2018) In vitro and in vivo evaluation of curcumin loaded hollow microspheres prepared with ethyl cellulose and citric acid. Int J Biol Macromol 115:1046–1054

    Article  CAS  Google Scholar 

  26. Wu YJ, Chen T, Chen IF, Kuo SM, Chuang CW (2018) Developing highly porous collagen scaffolds by using alginate microsphere porogens for stem cell cultures. Mater Lett 223:120–123

    Article  CAS  Google Scholar 

  27. Mei S, Han PP, Wu H, Shi JF, Tang L, Jiang ZG (2018) One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. J Biotechnol 266:1–8

    Article  CAS  Google Scholar 

  28. Sart S, Schneider YJ, Agathos SN (2009) Ear mesenchymal stem cells: an efficient adult multipotent cell population fit for rapid and scalable expansion. J Biotechnol 139(4):291–299

    Article  CAS  Google Scholar 

  29. Sart S, Schneider YJ, Agathos SN (2010) Influence of culture parameters on ear mesenchymal stem cells expanded on microcarriers. J Biotechnol 150(1):149–160

    Article  CAS  Google Scholar 

  30. Wang JL, Chen Q, Du BB, Cao L, Lin H, Fan ZY, Dong J (2018) Enhanced bone regeneration composite scaffolds of PLLA/beta-TCP matrix grafted with gelatin and HAp. Mater Sci Eng C Mater Biol Appl 87:60–69

    Article  CAS  Google Scholar 

  31. Li P, Dou X, Feng C, Schoenherr H (2018) Enhanced cell adhesion on a bio-inspired hierarchically structured polyester modified with gelatin-methacrylate. Biomater Sci 6(4):785–792

    Article  CAS  Google Scholar 

  32. Jahantigh F, Nazirzadeh M (2017) Synthesis and characterization of TiO2 nanoparticles with polycarbonate and investigation of its mechanical properties. Int J Nanosci 16(5–6):1750012

    Article  CAS  Google Scholar 

  33. Rostamiyan Y, Ferasat A (2017) High-speed impact and mechanical strength of ZrO2/polycarbonate nanocomposite. Int J Damage Mech 26(7):989–1002

    Article  CAS  Google Scholar 

  34. Kumaraswamy S, Thangasundaralingam SR, Sekar R, Jayakrishnan A (2017) A floating-type dosage form of repaglinide in polycarbonate microspheres. J Drug Deliv Sci Technol 41:99–105

    Article  CAS  Google Scholar 

  35. Lin YS, Yang CH, Hsu YY, Hsieh CL (2013) Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation. Electrophoresis 34(3):425–431

    Article  CAS  Google Scholar 

  36. Yi W, Sun Y, Wei X, Gu C, Dong X, Kang X, Guo S, Dou K (2010) Proteomic profiling of human bone marrow mesenchymal stem cells under shear stress. Mol Cell Biochem 341(1–2):9–16

    Article  CAS  Google Scholar 

  37. Knippenberg M, Helder MN, Doulabi BZ, Semeins CM, Wuisman P, Klein-Nulend J (2005) Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng 11(11–12):1780–1788

    Article  CAS  Google Scholar 

  38. Yourek G, McCormick SM, Mao JJ, Reilly GC (2010) Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 5(5):713–724

    Article  CAS  Google Scholar 

  39. Potier E, Noailly J, Ito K (2010) Directing bone marrow-derived stromal cell function with mechanics. J Biomech 43(5):807–817

    Article  CAS  Google Scholar 

  40. Olsen JV, Kirkegaard P, Pedersen NJ, Eldrup M (2007) PALM: a new program for the evaluation of positron lifetime spectra. Phys Status Solidi C Curr Top Solid State Phys 4(10):4004–4006

    Article  CAS  Google Scholar 

  41. Zhu Y, Bhandari B, Prakash S (2018) Tribo-rheometry behaviour and gel strength of κ-carrageenan and gelatin solutions at concentrations, pH and ionic conditions used in dairy products. Food Hydrocolloids 84:292–302

    Article  CAS  Google Scholar 

  42. Völkl A, Mohr H, Weber G, Fahimi HD (1997) Isolation of rat hepatic peroxisomes by means of immune free flow electrophoresis. Electrophoresis 18(5):774–780

    Article  Google Scholar 

  43. Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O’Hara DM, Tchistiakova L, Katragadda M (2018) Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. In: MABS-AUSTIN, vol 10, no 1, pp 81–94

  44. Wang J, Li D, Li T, Ding J, Liu J, Li B, Chen X (2015) Gelatin tight-coated poly(lactide-co-glycolide) scaffold Incorporating rhBMP-2 for bone tissue engineering. Materials 8(3):1009–1026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Project Nos. 51673186, 51203152, 8167090834 and 51473164), the Program of Scientific Development of Jilin Province (20170520121JH and 20170520141JH), the joint funded program of Chinese Academy of Sciences and Japan Society for the Promotion of Science (GJHZ1519) and the Special Fund for Industrialization of Science and Technology Cooperation between Jilin Province and Chinese Academy of Science (2017SYHZ0021). We thank youdao (https://f.youdao.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Yang, Yu Wang or Peibiao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, L., Ma, R. et al. Preparation of polycarbonate/gelatine microspheres using a high-voltage electrostatic technique for enhancing the adhesion and proliferation of mesenchymal stem cells. J Mater Sci 54, 7180–7197 (2019). https://doi.org/10.1007/s10853-018-03200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03200-1

Navigation